【題目】在平面內(nèi),分別用3根、5根、6根……火柴棒首尾依次相接,能搭成什么形狀的三角形呢?通過嘗試,列表如下.

火柴棒數(shù)

3

5

6

示意圖

形狀

等邊三角形

等腰三角形

等邊三角形

:(1)4根火柴棒能搭成三角形嗎?

(2)8根、12根火柴棒分別能搭成幾種不同形狀的三角形?并畫出它們的示意圖.

【答案】(1)4根火柴棒不能搭成三角形(2)8根火柴棒能搭成一種三角形,12根火柴棒能搭成三種不同的三角形:(4,4,4),(5,5,2),(3,4,5)

【解析】試題分析

(1)由“三角形三邊間的關(guān)系”可知,四根火柴棒不能圍成三角形;

(2)結(jié)合“三角形三邊間的關(guān)系”分析可知:①8根火柴棒能搭成一種三角形其邊長分別為2、3、3,再根據(jù)邊長畫出示意圖即可;②12根火柴棒可以搭成三種三角形,其邊長分別(1)4、4、4;(2)5、5、2;(3)3、4、5;再根據(jù)邊長畫出示意圖即可.

試題解析

1)由三角形三邊間的關(guān)系分析可知:4根火柴棒不能搭成三角形.

2① 8根火柴棒能搭成一種三角形,示意圖如下

②12根火柴棒能搭成三種不同的三角形,其邊長分別為:(4,4,4),(5,5,2),(3,4,5),示意圖如下:

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對甲、乙兩種小麥各選用10塊面積相同的試驗田進行種植試驗,它們的平均畝產(chǎn)量分別是 =610千克, =608千克,畝產(chǎn)量的方差分別是S2=29.6,S2=2.7.則關(guān)于兩種小麥推廣種植的合理決策是(
A.甲的平均畝產(chǎn)量較高,應推廣甲
B.甲、乙的平均畝產(chǎn)量相差不多,均可推廣
C.甲的平均畝產(chǎn)量較高,且畝產(chǎn)量比較穩(wěn)定,應推廣甲
D.甲、乙的平均畝產(chǎn)量相差不多,但乙的畝產(chǎn)量比較穩(wěn)定,應推廣乙

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校七年級(1)班共46人,前段時間有一位同學身患重病,其余同學獻“愛心”為其捐款,共捐得156元,捐款情況見下表,由于記錄的同學不小心,造成捐款3元和4元的人數(shù)看不清楚了.請你根據(jù)表格提供的信息,求出捐款3元和4元的人數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校需要招聘一名教師,對三名應聘者進行了三項素質(zhì)測試下面是三名應聘者的綜合測試成績:

應聘者

成績

項目

A

B

C

基本素質(zhì)

70

65

75

專業(yè)知識

65

55

50

教學能力

80

85

85

(1)如果根據(jù)三項測試的平均成績確定錄用教師,那么誰將被錄用?

(2)學校根據(jù)需要,對基本素質(zhì)、專業(yè)知識、教學能力的要求不同,決定按2:1:3的比例確定其重要性,那么哪一位會被錄用?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x﹣4與拋物線y=ax2+bx+c相交于A,B兩點,其中A,B兩點的橫坐標分別為﹣1和﹣4,且拋物線過原點.

(1)求拋物線的解析式;
(2)在坐標軸上是否存在點C,使△ABC為等腰三角形?若存在,求出點C的坐標,若不存在,請說明理由;
(3)若點P是線段AB上不與A,B重合的動點,過點P作PE∥OA,與拋物線第三象限的部分交于一點E,過點E作EG⊥x軸于點G,交AB于點F,若SBGF=3SEFP , 求 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.為檢測某市正在銷售的酸奶質(zhì)量,應采用抽樣調(diào)查的方式
B.兩名同學連續(xù)六次的數(shù)學測試平均分相同,那么方差較大的同學的數(shù)學成績更穩(wěn)定
C.拋擲一個正方體骰子,點數(shù)為奇數(shù)的概率是
D.“打開電視,正在播放動畫片”是必然事件

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某餐廳計劃購買12張餐桌和一批椅子(不少于12把),現(xiàn)從甲、乙兩商場了解到同一型號的餐桌報價都為每張200元,餐椅報價都為每把50元.甲商場規(guī)定:每購買一張餐桌贈送一把餐椅;乙商場規(guī)定:所有餐桌、餐椅均按報價的八五折銷售,那么,什么情況下到甲商場購買更優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程(1﹣2k)x2﹣2 x﹣1=0有兩個不相等實數(shù)根,則k的取值范圍為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知購買1盆甲種花卉和3盆乙種花卉共需125元,購買3盆甲種花卉和2盆乙種花卉共需165元.
(1)求購買1盆甲種花卉和購買1盆乙種花卉各需多少元?
(2)某校為綠化校園決定購買甲乙兩種花卉共60盆,要求購買的甲種花卉盆數(shù)不少于乙種花卉的 ,請幫該校設(shè)計一種最省錢的購買方案,并計算此時購買這兩種花卉所需的費用.

查看答案和解析>>

同步練習冊答案