【題目】已知關(guān)于x的方程(1﹣2k)x2﹣2 x﹣1=0有兩個不相等實數(shù)根,則k的取值范圍為

【答案】0≤k<1且k≠
【解析】解:∵關(guān)于x的方程(1﹣2k)x2﹣2 x﹣1=0有兩個不相等實數(shù)根, ∴△=(2 2﹣4×(1﹣2k)×(﹣1)
=4k﹣8k+4>0,
解得:0<k<1且1﹣2k≠0,k≥0,
∴k的取值范圍為0<k<1且k≠
所以答案是:0≤k<1且k≠
【考點精析】本題主要考查了一元二次方程的定義和求根公式的相關(guān)知識點,需要掌握只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程為一元二次方程;根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】觀察下列等式:

第一個等式:a1==-

第二個等式:a2==-

第三個等式:a3==-

第四個等式:a4==-

按上述規(guī)律,回答下列問題:

(1)請寫出第六個等式:a6=_____=_____;

(2)用含n的代數(shù)式表示第n個等式:an=_____=_____;

(3)a1+a2+a3+a4+a5+a6=_____(得出最簡結(jié)果);

(4)計算:a1+a2++an

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面內(nèi),分別用3根、5根、6根……火柴棒首尾依次相接,能搭成什么形狀的三角形呢?通過嘗試,列表如下.

火柴棒數(shù)

3

5

6

示意圖

形狀

等邊三角形

等腰三角形

等邊三角形

:(1)4根火柴棒能搭成三角形嗎?

(2)8根、12根火柴棒分別能搭成幾種不同形狀的三角形?并畫出它們的示意圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店購買一批時令水果,在20天內(nèi)銷售完畢,店主將本次此銷售數(shù)據(jù)繪制成函數(shù)圖象,如圖①,日銷售量y(千克)與銷售時間x(天)之間的函數(shù)關(guān)系;如圖②,銷售單價p(元/千克)與銷售時間x(天)之間的函數(shù)關(guān)系式.
(1)求y關(guān)于x和p關(guān)于x的函數(shù)關(guān)系式;
(2)若日銷售量不低于36千克的時間段為“最佳銷售期”,則此次銷售過程中“最佳銷售期”共有多少天?在此期間銷售金額最高是第幾天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:

(1)x+2(5﹣3x)=15﹣3(7﹣5x

(2)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鄭州地鐵1號線在2013年12月28日通車之前,為了解市民對地鐵票的定價意向,市物價局向社會公開征集定價意見.某學校課外小組也開展了“你認為鄭州地鐵起步價定為多少合適?”的問卷調(diào)查,征求市民的意見,并將某社區(qū)市民的問卷調(diào)查結(jié)果整理后制成了如下統(tǒng)計圖: 根據(jù)統(tǒng)計圖解答:
(1)同學們一共隨機調(diào)查了人;
(2)請你把條形統(tǒng)計圖補充完整;
(3)假定該社區(qū)有1萬人,請估計該社區(qū)支持“起步價為3元”的市民大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABCD中,E、F分別在BC、AD上,若想要使四邊形AFCE為平行四邊形,需添加一個條件,這個條件不可以是( 。

A. AF=CE B. AE=CF C. ∠BAE=∠FCD D. ∠BEA=∠FCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學舉行中國夢校園好聲音歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.

1)根據(jù)圖示填寫下表;

平均數(shù)(分)

中位數(shù)(分)

眾數(shù)(分)

初中部

85

高中部

85

100

2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;

3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】OB是∠AOC內(nèi)部一條射線,OM是∠AOB平分線,ON是∠AOC平分線,OP是∠NOA平分線,OQ是∠MOA平分線,則∠POQ∶∠BOC=( )

A. 1∶2 B. 1∶3 C. 2∶5 D. 1∶4

查看答案和解析>>

同步練習冊答案