【題目】如圖,邊長為正方形OABC的邊OA、OC在坐標軸上.在軸上線段(Q在A的右邊),P從A出發(fā),以每秒1個單位的速度向O運動,當點P到達點O時停止運動,運動時間為.連接PB,過P作PB的垂線,過Q作軸的垂線,兩垂線相交于點D.連接BD交軸于點E,連接PD交軸于點F,連接PE.
(1)求∠PBD的度數(shù).
(2)設△POE的周長為,探索與的函數(shù)關系式,并寫出的取值范圍.
(3)令,當△PBE為等腰三角形時,求△EFD的面積.
【答案】(1)∠PBD=45° (2) (3) 或。
【解析】(1)易證BAP≌PQD,從而得到DQ=AP=t,從而可以求出∠PAD的度數(shù).
(2)由于∠EBP=45°,故圖1是以正方形為背景的一個基本圖形,借助于三角形全等由l=EP+PO+EO=(CE+EO)+(AP+PO)=2AO進行求解,然后結合條件進行取舍,最終確定t的取值范圍值;(3)先證明三角形全等,再求出EF,即可得出面積.
解:(1) ∵∠APB+∠PBA=∠APB+∠DPQ=90°
∴∠PBA=∠DPQ
又∵∠BAP=∠PQD=90°,BA=PQ=
∴△BAP≌△PQD
∴BP=PD
又∵BP⊥PD
∴∠PBD=45°
(2)延長PA至M,使得AM=CE
在△BAM與△BCE中
∵
∴△BAM≌△BCE
∴∠MBA=∠EBC
∵∠EBC+∠ABP=45°
∴∠MBP=∠MBA+∠ABP=45°=∠EBP
在△BPM與△BPE中
∵
∴△BPM≌△BPE
∴EP=MP=MA+AP=CE+AP
又∵l=EP+PO+EO=(CE+EO)+(AP+PO)=2AO
∴
(3)EP=EB
∵∠PBD=45°
∴EP⊥EB ,E為BD中點,
即E與C重合,P與O重合
此時,S△EFD=8,
PB=PE
∵∠PBD=45°
∴EP⊥PB (不存在)
BP=BE
∵BA=BC
∴△BAP≌△BCE ∴CE=AP=t ∴PE=2t
又∵OE=OP= ∴PE= ∴= 解得:
∵△BAP≌△PQD ∴AP=QD ∴D
∵P ∴ ∴F
∴EF=
此時,
綜上所述:或。
“點睛”本題考查了正方形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)與判定等知識,考查了分類討論的思想,考查了利用基本活動經(jīng)驗解決問題的能力,綜合性非常強.熟悉正方形與一個度數(shù)為45°的角組成的基本圖形(其中角的頂點與正方形的一個頂點重合,角的兩邊與正方形的兩邊分別相交)是解決本題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】已知兩個共一個頂點的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,連接AF,M是AF的中點,連接MB、ME.
(1)如圖1,當CB與CE在同一直線上時,求證:MB∥CF;
(2)如圖1,若CB=a,CE=2a,求BM,ME的長;
(3)如圖2,當∠BCE=45°時,求證:BM=ME.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請大家閱讀下面兩段材料,并解答問題:
材料1:我們知道在數(shù)軸上表示4和1的兩點之間的距離為3(如圖1),而|4﹣1|=3,所以在數(shù)軸上表示4和1的兩點之間的距離為|4﹣1|.
材料2:再如在數(shù)軸上表示4和﹣2的兩點之間的距離為6(如圖2)而|4﹣(﹣2)|=6,所以數(shù)軸上表示數(shù)4和﹣2的兩點之間的距離|4﹣(﹣2)|.
(1)(如圖3)根據(jù)上述規(guī)律,我們可以得出結論:在數(shù)軸上表示數(shù)a和數(shù)b兩點之間的距離等于 .
(2)試一試,求在數(shù)軸上表示的數(shù)5與﹣4的兩點之間的距離為 .
(3)已知數(shù)軸上表示數(shù)a的點M與表示數(shù)﹣1的點之間的距離為3,表示數(shù)b的點N與表示數(shù)2的點之間的距離為4,求M,N兩點之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一條東西走向的商業(yè)街上,依次有書店(記為A)、冷飲店(記為B)、鞋店(記為C),冷飲店位于鞋店西邊50m處,鞋店位于書店東邊60m處,王平先去書店,然后沿著這條街向東走了30m至D處,接著向西走50m到達E處.
(1)以A為原點、向東為正方向畫數(shù)軸,在數(shù)軸上表示出上述A,B,C,D,E的位置;
(2)若在這條街上建一家超市,使超市與鞋店C分居E點兩側(cè),且到E點的距離相等,問超市在冷飲店的什么方向?距離多遠?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,鐵路上A,B兩點相距25 km,C,D為兩村莊,DA⊥AB于點A,CB⊥AB于點B,已知DA=15 km,CB=10 km,現(xiàn)在要在鐵路AB上建一個土特產(chǎn)品收購站E,使得C,D兩村到E站的距離相等,則E站應建在離A站多少km處?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,AE與BF交于點P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠DPF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次捐款活動中,學校團支書想了解本校學生的捐款情況,隨機抽取了50名學生的捐款進行了統(tǒng)計,并繪制成如圖所示的統(tǒng)計圖.
(1)這50名同學捐款的眾數(shù)為 元,中位數(shù)為 元;
(2)如果捐款的學生有300人,估計這次捐款有多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了慶祝元旦,學校準備舉辦一場“經(jīng)典誦讀”活動,某班準備網(wǎng)購一些經(jīng)典誦讀本和示讀光盤,誦讀本一套定價100元,示讀光盤一張定價20元.元旦期間某網(wǎng)店開展促銷活動,活動期間向客戶提供兩種優(yōu)惠方案:
方案A:買一套誦讀本送一張示讀光盤;
方案B:誦讀本和示讀光盤都按定價的九折付款.
現(xiàn)某班級要在該網(wǎng)店購買誦讀本10套和示讀光盤x張(x>10),解答下列三個問題:
(1)若按方案A購買,共需付款 元(用含x的式子表示),
若按方案B購買,共需付款 元(用含x的式子表示);
(2)若需購買示讀光盤15張(即x=15)時,請通過計算說明按哪種方案購買較為合算;
(3)若需購買示讀光盤15張(即x=15)時,你還能給出一種更為省錢的購買方法嗎?若能,請寫出你的購買方法和所需費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A、B兩地在數(shù)軸上相距20米,A地在數(shù)軸上表示的點為-8,小烏龜從A地出發(fā)沿數(shù)軸往B地方向前進,第一次前進1米,第二次后退2米,第三次再前進3米,第四次又后退4米,……,按此規(guī)律行進,(數(shù)軸的一個單位長度等于1米)
(1)求B地在數(shù)軸上表示的數(shù);
(2)若B地在原點的左側(cè),經(jīng)過第五次行進后小烏龜?shù)竭_點P,第六次行進后到達點Q,則點P和點Q到點A的距離相等嗎?請說明理由;
(3)若B地在原點的右側(cè),那么經(jīng)過30次行進后,小烏龜?shù)竭_的點與點B之間的距離是多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com