如圖,作此圖關(guān)于直線AB的軸對(duì)稱圖形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系中,拋物線y=-x2+(m+1)x+3m與直線y=-x+3交于A、C兩點(diǎn);點(diǎn)P從原點(diǎn)O點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿OC向終點(diǎn)C運(yùn)動(dòng),過(guò)P作x軸的垂線,交拋物線于D,交AC于精英家教網(wǎng)E,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為x(秒),四邊形AOCD的面積為S.
(1)求點(diǎn)A、C的坐標(biāo),并求此拋物線的解析式;
(2)求S關(guān)于x的函數(shù)關(guān)系式,并求出S的最大值;
(3)探究:是否存在點(diǎn)P,使直線AC把△PCD分成面積之比為2:1的兩部分?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

唐朝詩(shī)人李欣的詩(shī)《古從軍行》開頭兩句說(shuō):“白日登山望峰火,黃昏飲馬傍交河.”詩(shī)中隱含著一個(gè)有趣的數(shù)學(xué)問(wèn)題--將軍飲馬問(wèn)題:
如圖1所示,詩(shī)中將軍在觀望烽火之后從山腳下的A點(diǎn)出發(fā),走到河旁邊的P點(diǎn)飲馬后再到B點(diǎn)宿營(yíng).請(qǐng)問(wèn)怎樣走才能使總的路程最短?
做法如下:如圖1,從B出發(fā)向河岸引垂線,垂足為D,在AD的延長(zhǎng)線上,取B關(guān)于河岸的對(duì)稱點(diǎn)B′,連接AB′,與河岸線相交于P,則P點(diǎn)就是飲馬的地方,將軍只要從A出發(fā),沿直線走到P,飲馬之后,再由P沿直線走到B,所走的路程就是最短的.
(1)觀察發(fā)現(xiàn)
再如圖2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,點(diǎn)E、F是底邊AD與BC的中點(diǎn),連接EF,在線段EF上找一點(diǎn)P,使BP+AP最短.
作點(diǎn)B關(guān)于EF的對(duì)稱點(diǎn),恰好與點(diǎn)C重合,連接AC交EF于一點(diǎn),則這點(diǎn)就是所求的點(diǎn)P,故BP+AP的最小值為
2
3
2
3

(2)實(shí)踐運(yùn)用
如圖3,已知⊙O的直徑MN=1,點(diǎn)A在圓上,且∠AMN的度數(shù)為30°,點(diǎn)B是弧AN的中點(diǎn),點(diǎn)P在直徑MN上運(yùn)動(dòng),求BP+AP的最小值.
(3)拓展遷移
如圖4,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為x=1,且拋物線經(jīng)過(guò)A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
①求這條拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;
②在拋物線的對(duì)稱軸直線x=1上找到一點(diǎn)M,使△ACM周長(zhǎng)最小,請(qǐng)求出此時(shí)點(diǎn)M的坐標(biāo)與△ACM周長(zhǎng)最小值.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,梯形ABCD中,AD∥BC,∠A=90°,∠C=45°,AB=AD=4.E是直線AD上一點(diǎn),連接BE,過(guò)點(diǎn)E作EF⊥BE交直線CD于點(diǎn)F.連接BF.
(1)若點(diǎn)E是線段AD上一點(diǎn)(與點(diǎn)A、D不重合),(如圖1所示)
①求證:BE=EF.
②設(shè)DE=x,△BEF的面積為y,求y關(guān)于x的函數(shù)解析式,并寫出此函數(shù)的定義域.
(2)直線AD上是否存在一點(diǎn)E,使△BEF是△ABE面積的3倍?若存在,直接寫出DE的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年北京市中考數(shù)學(xué)試題 題型:044

如圖,在平面直角坐標(biāo)系xOy中,△ABC三個(gè)機(jī)戰(zhàn)的坐標(biāo)分別為A(-6,0),B(6,0),C(0,4),延長(zhǎng)AC到點(diǎn)D,使CD=AC,過(guò)點(diǎn)D作DE∥AB交BC的延長(zhǎng)線于點(diǎn)E.

(1)求D點(diǎn)的坐標(biāo);

(2)作C點(diǎn)關(guān)于直線DE的對(duì)稱點(diǎn)F,分別連結(jié)DF、EF,若過(guò)B點(diǎn)的直線y=kx+b將四邊形CDFE分成周長(zhǎng)相等的兩個(gè)四邊形,確定此直線的解析式;

(3)設(shè)G為y軸上一點(diǎn),點(diǎn)P從直線y=kx+b與y軸的交點(diǎn)出發(fā),先沿y軸到達(dá)G點(diǎn),再沿GA到達(dá)A點(diǎn),若P點(diǎn)在y軸上運(yùn)動(dòng)的速度是它在直線GA上運(yùn)動(dòng)速度的2倍,試確定G點(diǎn)的位置,使P點(diǎn)按照上述要求到達(dá)A點(diǎn)所用的時(shí)間最短.(要求:簡(jiǎn)述確定G點(diǎn)位置的方法,但不要求證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案