【題目】一艘輪船以每小時(shí)20千米的速度從甲港駛往160千米遠(yuǎn)的乙港,2小時(shí)后,一艘快艇以每小時(shí)40千米的速度也從甲港駛往乙港.分別列出輪船和快艇行駛的路程y(千米)與時(shí)間x(小時(shí))的函數(shù)關(guān)系式,在下圖中的直角坐標(biāo)系中畫(huà)出函數(shù)圖象,觀察圖象回答下列問(wèn)題:
(1)何時(shí)輪船行駛在快艇的前面?
(2)何時(shí)快艇行駛在輪船的前面?
(3)哪一艘船先駛過(guò)60千米?哪一艘船先駛過(guò)100千米?
【答案】(1)x<4小時(shí)時(shí)(2)4小時(shí)后(3)輪船先駛過(guò)60千米,快艇先駛過(guò)100千米.
【解析】試題分析:運(yùn)用待定系數(shù)法分別求函數(shù)關(guān)系式;解方程組求交點(diǎn)坐標(biāo),結(jié)合圖象回答(1)、(2)兩個(gè)問(wèn)題;(3)直接觀察圖象即可回答即可.
解:設(shè)快艇的函數(shù)關(guān)系式為y1=kx+b.
∵圖象過(guò)(2,0)、(6,160),
∴ ,
解得 .
∴y1=40x-80.
同理可求輪船的函數(shù)關(guān)系式為y2=20x.
當(dāng)y1=y2時(shí),40x-80=20x,解得 x=4.
即x=4時(shí),快艇追上輪船.
觀察圖象可知:
(1)輪船行使4小時(shí)之前,輪船行駛在快艇的前面;
(2)輪船行使4小時(shí)之后,快艇行駛在輪船的前面;
(3)輪船先駛過(guò)60千米,快艇先駛過(guò)100千米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜經(jīng)銷(xiāo)商去蔬菜生產(chǎn)基地批發(fā)某種蔬菜,已知這種蔬菜的批發(fā)量在20千克~60千克之間(含20千克和60千克)時(shí),每千克批發(fā)價(jià)是5元;若超過(guò)60千克時(shí),批發(fā)的這種蔬菜全部打八折,但批發(fā)總金額不得少于300元.
(1)根據(jù)題意,填寫(xiě)如表:
(2)經(jīng)調(diào)查,該蔬菜經(jīng)銷(xiāo)商銷(xiāo)售該種蔬菜的日銷(xiāo)售量y(千克)與零售價(jià)x(元/千克)是一次函數(shù)關(guān)系,其圖象如圖,求出y與x之間的函數(shù)關(guān)系式;
(3)若該蔬菜經(jīng)銷(xiāo)商每日銷(xiāo)售此種蔬菜不低于75千克,且當(dāng)日零售價(jià)不變,那么零售價(jià)定為多少時(shí),該經(jīng)銷(xiāo)商銷(xiāo)售此種蔬菜的當(dāng)日利潤(rùn)最大?最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,
(1)試判斷DG與BC的位置關(guān)系,并說(shuō)明理由.
(2)若∠A=70°,∠BCG=40°,求∠AGD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】江南農(nóng)場(chǎng)收割小麥,已知1臺(tái)大型收割機(jī)和3臺(tái)小型收割機(jī)1小時(shí)可以收割小麥1.4公頃,2臺(tái)大型收割機(jī)和5臺(tái)小型收割機(jī)1小時(shí)可以收割小麥2.5公頃.
(1)每臺(tái)大型收割機(jī)和每臺(tái)小型收割機(jī)1小時(shí)收割小麥各多少公頃?
(2)大型收割機(jī)每小時(shí)費(fèi)用為300元,小型收割機(jī)每小時(shí)費(fèi)用為200元,兩種型號(hào)的收割機(jī)一共有10臺(tái),要求2小時(shí)完成8公頃小麥的收割任務(wù),且總費(fèi)用不超過(guò)5400元,有幾種方案?請(qǐng)指出費(fèi)用最低的一種方案,并求出相應(yīng)的費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面的材料,回答問(wèn)題:已知(x-2)(6+2x)>0,求x的取值范圍.
解:根據(jù)題意,得或
分別解這兩個(gè)不等式組,得x>2或x<-3.
故當(dāng)x>2或x<-3時(shí),(x-2)(6+2x)>0.
。1)由(x-2)(6+2x)>0,得出不等式組或體現(xiàn)了____思想.
。2)試?yán)蒙鲜龇椒ǎ蟛坏仁剑?/span>x-3)(1-x)<0的解集.
附加題(15分,不計(jì)入總分)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在開(kāi)展 “校園獻(xiàn)愛(ài)心”活動(dòng)中,準(zhǔn)備向南部山區(qū)學(xué)校捐贈(zèng)男、女兩種款式的書(shū)包.已知男款書(shū)包的單價(jià)50元/個(gè),女款書(shū)包的單價(jià)70元/個(gè).
(1)原計(jì)劃募捐3400元,購(gòu)買(mǎi)兩種款式的書(shū)包共60個(gè),那么這兩種款式的書(shū)包各買(mǎi)多少個(gè)?
(2)在捐款活動(dòng)中,由于學(xué)生捐款的積極性高漲,實(shí)際共捐款4800元,如果至少購(gòu)買(mǎi)兩種款式的書(shū)包共80個(gè),那么女款書(shū)包最多能買(mǎi)多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn)A(﹣3,0),F(xiàn)(8,0),B(0,4)三點(diǎn)
(1)求拋物線解析式及對(duì)稱(chēng)軸;
(2)若點(diǎn)D在線段FB上運(yùn)動(dòng)(不與F,B重合),過(guò)點(diǎn)D作DC⊥軸于點(diǎn)C(x,0),將△FCD沿CD向左翻折,點(diǎn)B對(duì)應(yīng)點(diǎn)為點(diǎn)E,△CDE與△FBO重疊部分面積為S.
①試求出S與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量取值范圍.
②是否存在這樣的點(diǎn)C,使得△BDE為直角三角形,若存在,求出C點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)拋物線對(duì)稱(chēng)軸上有一點(diǎn)M,平面內(nèi)有一點(diǎn)N,若以A,B,M,N四點(diǎn)組成的四邊形為菱形,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=-x+4的圖象與x軸、y軸的交點(diǎn)分別為A、B,點(diǎn)P在直線y=2x上.
(1)若點(diǎn)P是一次函數(shù)y=-x+4的圖象與直線y=2x的交點(diǎn),求△OBP的面積;
(2)若點(diǎn)P的坐標(biāo)為(3,6),求△ABP的面積;
(3)若△ABP的面積為12時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明和媽媽玩游戲,小明每次從籃子中拿出8個(gè)球,媽媽就放回去3個(gè),籃子中共有108個(gè)球.
(1)第一次拿出后,籃子中剩下 個(gè)球.
(2)小明要取多少次才能把球全部拿出來(lái)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com