【題目】如圖,直線AB∥CD,∠FGH=90°,∠GHM= 40°,∠HMN=30°,并且∠EFA的兩倍比∠CNP大10°,則∠PND的大小是( )
A. 100°B. 120°C. 130°D. 150°
【答案】C
【解析】
作輔助線:延長PM、EG交于點K;EG的延長線交CD于點O,PM延長線交AB于點L,利用平行線性質(zhì)進行求解.
延長PM、EG交于點K;EG的延長線交CD于點O,PM延長線交AB于點L,如圖,
∵∠HMN=30゜,
∴∠HMK=150゜,
在四邊形GHMK中,∠HGK=90゜,∠GHM=40゜,∠HMK=150゜,
∴∠GKM=360゜-∠HGK-∠GHM-∠HMK=360゜-90゜-40゜-150゜=80゜,
∴∠FKL=100゜,
∴∠NKO=100゜,
設(shè)∠EFA =x,則∠PNC =2x-10゜,
∴∠KNO=2x-10゜,
∵AB∥CD,
∴∠KON=∠EFA=x,
∵∠KNO+∠NKO+∠KON=180゜,
∴2x-10゜+x+100゜=180゜,解得,x=30゜,
∴∠PNC=2×30゜-10゜=50゜,
∴∠PND=180゜-50゜=130゜.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形 ABCD 中,AD∥BC,DE⊥BC,垂足為點 E,連接 AC 交DE 于點 F,點 G 為 AF 的中點,∠ACD=2∠ACB,若 DC=5,則 AF 的長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(1)班所有學(xué)生參加2010年初中畢業(yè)生升學(xué)體育測試,根據(jù)測試評分標準,將他們的成績進行統(tǒng)計后分為A、B、C、D四等,并繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(未完成),請結(jié)合圖中所給信息解答下列問題:
(1)九年級(1)班參加體育測試的學(xué)生有 人;
(2)將條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,等級B部分所占的百分比是 ,等級C對應(yīng)的圓心角的度數(shù)為 ;
(4)若該校九年級學(xué)生共有850人參加體育測試,估計達到A級和B級的學(xué)生共有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某飲料廠開發(fā)了A、B兩種新型飲料,主要原料均為甲和乙,每瓶飲料中甲、乙的含量如下表所示.現(xiàn)用甲原料和乙原料各2800克進行試生產(chǎn),計劃生產(chǎn)A、B兩種飲料共100瓶.設(shè)生產(chǎn)A種飲料x瓶,解析下列問題:
原料名稱 飲料名稱 | 甲 | 乙 |
A | 20克 | 40克 |
B | 30克 | 20克 |
(1)有幾種符合題意的生產(chǎn)方案寫出解析過程;
(2)如果A種飲料每瓶的成本為2.60元,B種飲料每瓶的成本為2.80元,這兩種飲料成本總額為y元,請寫出y與x之間的關(guān)系式,并說明x取何值會使成本總額最低?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量一個圓鐵環(huán)的半徑,某同學(xué)用了如下方法,將鐵環(huán)平放在水平桌面上,用有一個角為30°的直角三角板和刻度尺按如圖所示的方法得到相關(guān)數(shù)據(jù),進而求出鐵環(huán)半徑,若測得PA=5cm,則鐵環(huán)的半徑是_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD,AD∥BC.點P在直線CD上運動(點P和點C,D不重合,點P,A,B不在同一條直線上),若記∠DAP,∠APB,∠PBC分別為∠α,∠β,∠γ.
(1)如圖1,當(dāng)點P在線段CD上運動時,寫出∠α,∠β,∠γ之間的關(guān)系并說出理由;
(2)如圖2,如果點P在線段CD的延長線上運動,探究∠α,∠β,∠γ之間的關(guān)系,并說明理由.
(3)如圖3,BI平分∠PBC,AI交BI于點I,交BP于點K,且∠PAI:∠DAI=5:1,∠APB=20°,∠I=30°,求∠PAI的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為C(a,0),點C的坐標為(0,b),且a,b滿足(a﹣4)2+|b﹣6|=0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O→C→B→A→O的路線移動.
(1)a= ,b= ,點B的坐標為 .
(2)當(dāng)點P移動4秒時,請說明點P的位置,并求出點P的坐標;
(3)在移動過程中,當(dāng)點P到x軸的距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小武新家裝修,在裝修客廳時,購進彩色地磚和單色地磚共100塊,共花費5600元.已知彩色地磚的單價是80元/塊,單色地磚的單價是40元/塊.
(1)兩種型號的地磚各采購了多少塊?
(2)如果廚房也要鋪設(shè)這兩種型號的地磚共60塊,且采購地磚的費用不超過3200元,那么彩色地磚最多能采購多少塊?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,如圖,拋物線y=x2+bx+c與x軸交于點A和點B(4,0),與y軸交于點C(0,4).
(1)求拋物線的解析式;
(2)若點M是拋物線在x軸下方的動點,過點M作MN∥y軸交直線BC于點N求線段MN的最大值;(3)在(2)的條件下,當(dāng)MN取得最大值時,在拋物線的對稱軸l上是否存在點P使△PBN是等腰三角形?若存在,請直接寫出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com