【題目】因式分解:
(1)2x(a﹣b)﹣(b﹣a)
(2)3a2﹣27
(3)(y2﹣1)2+6(1﹣y2)+9.

【答案】
(1)解:原式=2x(a﹣b)+(a﹣b)

=(2x+1)(a﹣b)


(2)解:原式=3(a2﹣9)

=3(a+3)(a﹣3)


(3)解:原式=(y2﹣1)2﹣6(y2﹣1)+9

=(y2﹣4)2

=(y+2)2(y﹣2)2


【解析】(1)首先提取公因式(a﹣b),進而分解因式得出答案;(2)首先提取公因式3,進而利用平方差公式分解因式得出答案;(3)直接利用完全平方公式分解因式,再利用平方差公式分解因式得出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)必然事件A的概率為:P(A)=______________.

(2)不可能事件A的概率為:P(A)=______________.

(3)隨機事件A的概率為P(A):______________.

(4)隨機事件的概率的規(guī)律:事件發(fā)生的可能性越大,則它的概率越接近于_____________;反之,事件發(fā)生的可能性越小,則它的概率越接近于_____________.1~9這九個自然數(shù)中任取一個,2的倍數(shù)的概率是_____________.方程5x=10的解為負數(shù)的概率是_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角三角形ABC位于第一象限,AB=AC=2,直角頂點A在直線y=x上,其中A點的橫坐標(biāo)為1,且兩條直角邊AB,AC分別平行于x軸、y軸,若雙曲線y= (k≠0)與△ABC有交點,則k的取值范圍是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上,原點及原點左邊的點表示的數(shù)是(
A.正數(shù)
B.負數(shù)
C.非正數(shù)
D.非負數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,AC+BC=24,AO,BO分別是角平分線,且MNBA,分別交AC于N,BC于M,則CMN的周長為(

A.12 B.24 C.36 D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,∠B、C的平分線相交于點O,作BO、CO的垂直平分線分別交BC于點E、F.小明說:E、FBC的三等分點.你同意他的說法嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)閱讀理解:

如圖,在ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點D逆時針旋轉(zhuǎn)180°得到EBD),把AB、AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是

(2)問題解決:

如圖,在ABC中,D是BC邊上的中點,DEDF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CFEF;

(3)問題拓展:

如圖,在四邊形ABCD中,B+D=180°,CB=CD,BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果經(jīng)過三角形某一個頂點的一條直線可把它分成兩個小等腰三角形,那么我們稱該三角形為等腰三角形的生成三角形,簡稱生成三角形.

(1)如圖,已知等腰直角三角形ABC,∠A=90°,試說明:△ABC是生成三角形;

(2)若等腰三角形DEF有一個內(nèi)角等于36°,請你畫出簡圖說明△DEF是生成三角形.(要求畫出直線,標(biāo)注出圖中等腰三角形的頂角、底角的度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)y=kx與y= 的圖象在第一象限內(nèi)交于點A,過點A作AD垂直x軸于點D,且SAOD=
(1)求反比例函數(shù)的關(guān)系式;
(2)若AD=1,試求k的值;
(3)若kx﹣ >0,請直接寫出x的取值范圍

查看答案和解析>>

同步練習(xí)冊答案