【題目】商家花費1440元購進(jìn)某種水果80千克,銷售中有10%的水果正常損耗,為了避免虧本,售價至少應(yīng)定為________/千克.

【答案】20

【解析】

設(shè)商家把售價應(yīng)該定為x/千克,因為銷售中有10%的水果正常損耗,故水果最終的銷售總價為80x×(1-10%)元,根據(jù)題意列出不等式即可.

解:設(shè)商家把售價應(yīng)該定為x/千克,
根據(jù)題意得:80x×(1-10%)≥1440,
解得,x20,
故為避免虧本,商家把售價應(yīng)該至少定為20/千克.
故答案為:20

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】住建部發(fā)布數(shù)據(jù)顯示,全國城市年度節(jié)約用水量約為65億立方米,數(shù)據(jù)“65億”用科學(xué)記數(shù)法表示為( 。

A.0.65×102B.65×108C.6.5×109D.0.65×1010

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A、B兩點,B點坐標(biāo)為(3,0),與y軸交于點C(0,﹣3)

(1)求拋物線的解析式;

(2)點P在拋物線位于第四象限的部分上運動,當(dāng)四邊形ABPC的面積最大時,求點P的坐標(biāo)和四邊形ABPC的最大面積.

(3)直線l經(jīng)過A、C兩點,點Q在拋物線位于y軸左側(cè)的部分上運動,直線m經(jīng)過點B和點Q,是否存在直線m,使得直線l、m與x軸圍成的三角形和直線l、m與y軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知2x﹣3y=4,則x﹣1.5y=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文文和彬彬在證明有兩個角相等的三角形是等腰三角形這一命題時,畫出圖形,寫出已知,求證(如圖),她們對各自所作的輔助線描述如下:

文文過點ABC的中垂線AD,垂足為D”;

彬彬:ABC的角平分線AD”

數(shù)學(xué)老師看了兩位同學(xué)的輔助線作法后,說:彬彬的作法是正確的,而文文的作法需要訂正.

1)請你簡要說明文文的輔助線作法錯在哪里;

2)根據(jù)彬彬的輔助線作法,完成證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在ABC中,BECF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接AD、AG

1)求證:AD=AG;

2ADAG的位置關(guān)系如何,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與x軸交于A(6,0)、B(,0)兩點,與y軸交于點C,過拋物線上點M(1,3)作MN⊥x軸于點N,連接OM.

(1)求此拋物線的解析式;

(2)如圖1,將△OMN沿x軸向右平移t個單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點E、F.

①當(dāng)點F為M′O′的中點時,求t的值;

②如圖2,若直線M′N′與拋物線相交于點G,過點G作GH∥M′O′交AC于點H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a的平方的5倍減去3的差,應(yīng)寫成( )

A. 5a2–3 B. 5(a2–3) C. (5a)2–3 D. a2(5–3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于分式方程增根的說法正確的是( )
A.使所有的分母的值都為零的解是增根
B.分式方程的解為零就是增根
C.使分子的值為零的解就是增根
D.使最簡公分母的值為零的解是增根

查看答案和解析>>

同步練習(xí)冊答案