【題目】如圖所示,有一塊地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,則這塊地的面積.

【答案】解:如圖,連接AC.

在△ACD中,∵AD=4米,CD=3米,∠ADC=90°,

∴AC=5米,

又∵AC2+BC2=52+122=132=AB2

∴△ABC是直角三角形,

∴這塊地的面積=△ABC的面積﹣△ACD的面積= ×5×12﹣ ×3×4=24(平方米).


【解析】連接AC,先利用勾股定理求出AC,再根據(jù)勾股定理的逆定理判定△ABC是直角三角形,那么△ABC的面積減去△ACD的面積就是所求的面積.
【考點(diǎn)精析】利用勾股定理的概念和勾股定理的逆定理對(duì)題目進(jìn)行判斷即可得到答案,需要熟知直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;如果三角形的三邊長(zhǎng)a、b、c有下面關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,P是對(duì)角線AC上任意一點(diǎn),E為AD上的點(diǎn),且∠EPB=90°,PM⊥AD,PN⊥AB.
(1)求證:四邊形PMAN是正方形;
(2)求證:EM=BN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科學(xué)實(shí)驗(yàn)證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和反射出的光線與平面鏡所夾的角相等.

(1)如圖,一束光線m射到平面鏡a上,被a反射到平面鏡b上,又被b鏡反射出去,若b鏡反射出的光線n平行于m,且∠1=30,則∠2= ,∠3= ;

(2)在(1)中,若∠1=70,則∠3= ;若∠1=a,則∠3= ;

(3)由(1)(2)請(qǐng)你猜想:當(dāng)∠3= 時(shí),任何射到平面鏡a上的光線m經(jīng)過平面鏡a和b的兩次反射后,入射光線m與反射光線n總是平行的?請(qǐng)說明理由.

(提示:三角形的內(nèi)角和等于180

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù):31,3,5,3,2 的眾數(shù)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下是兩張不同類型火車的車票(表示動(dòng)車,表示高鐵):

1根據(jù)車票中的信息填空:該列動(dòng)車和高鐵是__________向而行(填).

2已知該列動(dòng)車和高鐵的平均速度分別為、,兩列火車的長(zhǎng)度不計(jì).

①經(jīng)過測(cè)算,如果兩列火車直達(dá)終點(diǎn)(即中途都不?咳魏握军c(diǎn)),高鐵比動(dòng)車將早到,求、兩地之間的距離.

②在①中測(cè)算的數(shù)據(jù)基礎(chǔ)上,已知、兩地途中依次設(shè)有個(gè)站點(diǎn)、、、,且,動(dòng)車每個(gè)站點(diǎn)都?浚哞F只?兩個(gè)站點(diǎn),兩列火車在每個(gè)?空军c(diǎn)都停留.求該列高鐵追上動(dòng)車的時(shí)刻.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)三角形中的其中一個(gè)外角等于與它相鄰的內(nèi)角,那么這個(gè)三角形是(  )

A.直角三角形B.銳角三角形C.鈍角三角形D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果mn<0,且m>0,那么點(diǎn)P(m2,mn)( )

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用代入消元法解下列方程

1 2

3 4

5 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC、BD相交于點(diǎn)O,分別延長(zhǎng)OB,OD到點(diǎn)E,F(xiàn),使BE=DF,順次連接A、E、C、F各點(diǎn).
(1)求證:∠FAD=∠EAB.
(2)若∠ADC=130°,要使四邊形AECF是正方形,求∠FAD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案