【題目】如圖,在ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,點(diǎn)E、FAD上的點(diǎn),且AE=EF=FD.連接BE、BF,使它們分別與AO相交于點(diǎn)G、H

1)求EGBG的值;

2)求證:AG=OG;

3)設(shè)AG=a,GH=bHO=c,求abc的值.

【答案】113;(2)見解析;(3532

【解析】

1)根據(jù)平行四邊形的性質(zhì)可得AO=ACAD=BC,AD∥BC,從而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根據(jù)相似三角形的性質(zhì),即可求出EGBG的值;

2)根據(jù)相似三角形的性質(zhì)可得GC=3AG,則有AC=4AG,從而可得AO=AC=2AG,即可得到GO=AOAG=AG;

3)根據(jù)相似三角形的性質(zhì)可得AG=AC,AH=AC,結(jié)合AO=AC,即可得到a=AC,b=ACc=AC,就可得到abc的值.

1四邊形ABCD是平行四邊形,

∴AO=ACAD=BC,AD∥BC,

∴△AEG∽△CBG

∵AE=EF=FD,

∴BC=AD=3AE,

∴GC=3AG,GB=3EG,

∴EGBG=13;

2∵GC=3AG(已證),

∴AC=4AG,

∴AO=AC=2AG,

∴GO=AOAG=AG

3∵AE=EF=FD,

∴BC=AD=3AE,AF=2AE

∵AD∥BC,

∴△AFH∽△CBH,

=,即AH=AC

∵AC=4AG,

∴a=AG=AC,

b=AHAG=ACAC=AC,

c=AOAH=ACAC=AC,

∴abc==532

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校初中各年級(jí)學(xué)生每天的平均睡眠時(shí)間(單位:h,精確到1h),抽樣調(diào)查了部分學(xué)生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)圖中提供的信息,回答下列問題:

1)求出扇形統(tǒng)計(jì)圖中百分?jǐn)?shù)a的值為   ,所抽查的學(xué)生人數(shù)為   

2)求出平均睡眠時(shí)間為8小時(shí)的人數(shù),并補(bǔ)全頻數(shù)直方圖.

3)求出這部分學(xué)生的平均睡眠時(shí)間的眾數(shù)和平均數(shù).

4)如果該校共有學(xué)生1200名,請(qǐng)你估計(jì)睡眠不足(少于8小時(shí))的學(xué)生數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc的圖象如圖,則下列敘述正確的是( )

A. abc0 B. 3ac0

C. b24ac≥0 D. 將該函數(shù)圖象向左平移2個(gè)單位后所得到拋物線的解析式為yax2c

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(-4,0),對(duì)稱軸為直線x=-1,下列結(jié)論:

①abc>0;

②2a-b=0;

一元二次方程ax2+bx+c=0的解是x1=-4,x2=1;

當(dāng)y>0時(shí),-4<x<2

其中正確的結(jié)論有(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】求二次函數(shù)的圖象如圖所示,其對(duì)稱軸為直線,與軸的交點(diǎn)為、,其中,有下列結(jié)論:①;②;③;④;⑤;其中,正確的結(jié)論有(

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,請(qǐng)?jiān)谙铝兴膫(gè)關(guān)系中,選出兩個(gè)恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)

關(guān)系:①ADBCAB=CD,③∠A=C,④∠B+C=180°.

已知:在四邊形ABCD中,      ,      

求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將ABO繞點(diǎn)A順指針旋轉(zhuǎn)到AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1C1處,點(diǎn)B1x軸上,再將AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到A1B1C2的位置,點(diǎn)C2x軸上,將A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到A2B2C2的位置,點(diǎn)A2x軸上,依次進(jìn)行下去,若點(diǎn)A,0)、B0,4),則點(diǎn)B2020的橫坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD

2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;

3)連接OM,MN

根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線yx2如圖所示,已知A點(diǎn)坐標(biāo)為(1,1),過點(diǎn)AAA1x軸交拋物線于點(diǎn)A1,過點(diǎn)A1A1A2OA交拋物線于點(diǎn)A2,過點(diǎn)A2A2A3x軸交拋物線于點(diǎn)A3,過點(diǎn)A3A3A4OA交拋物線于點(diǎn)A4,過點(diǎn)A4A4A5x軸交拋物線于點(diǎn)A5,則點(diǎn)A5的坐標(biāo)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案