【題目】如圖,在邊長(zhǎng)為 4 的等邊△ABC 中,點(diǎn) D 從點(diǎn)A 開(kāi)始在射線 AB 上運(yùn)動(dòng),速度為 1 個(gè)單位/秒,點(diǎn)F 同時(shí)從 C 出發(fā),以相同的速度沿射線 BC 方向運(yùn)動(dòng),過(guò)點(diǎn)D 作 DE⊥AC,連結(jié) DF 交射線 AC 于點(diǎn) G
(1)當(dāng) DF⊥AB 時(shí),求 t 的值;
(2)當(dāng)點(diǎn) D 在線段 AB 上運(yùn)動(dòng)時(shí),是否始終有 DG=GF?若成立,請(qǐng)說(shuō)明理由。
(3)聰明的斯揚(yáng)同學(xué)通過(guò)測(cè)量發(fā)現(xiàn),當(dāng)點(diǎn) D 在線段 AB 上時(shí),EG 的長(zhǎng)始終等于 AC 的一半,他想當(dāng)點(diǎn)D 運(yùn)動(dòng)到圖 2 的情況時(shí),EG 的長(zhǎng)是否發(fā)生變化?若改變,說(shuō)明理由;若不變,求出 EG 的長(zhǎng)。
【答案】(1);(2)見(jiàn)詳解;(3)不變.
【解析】
(1)設(shè)AD=x,則BD=4-x,BF=4+x.當(dāng)DF⊥AB時(shí),通過(guò)解直角△BDF求得x的值,易得t的值;
(2)如圖1,過(guò)點(diǎn)D作DH∥BC交AC于點(diǎn)H,構(gòu)建全等三角形:△DHG≌△FCG,結(jié)合全等三角形的對(duì)應(yīng)邊相等的性質(zhì)和圖中相關(guān)線段間的和差關(guān)系求得DG=GF;
(3)過(guò)F作FH⊥AC,可證△ADE≌△CFH,得DE=FH,AC=EH,再證△GDE≌△GFH,可得EG=GH,即可解題.
解:(1)設(shè)AD=x,則BD=4-x,BF=4+x.
當(dāng)DF⊥AB時(shí),∵∠B=60°,
∴∠DFB=30°,
∴BF=2BD,即4+x=2(4-x),
解得x=,
故t=;
(2)如圖1,過(guò)點(diǎn)D作DH∥BC交AC于點(diǎn)H,則∠DHG=∠FCG.
∵△ABC是等邊三角形,
∴△ADH是等邊三角形,
∴AD=DH.
又AD=CF,
∴DH=FC.
∵在△DHG與△FCG中,
,
∴△DHG≌△FCG(AAS),
∴DG=GF;
(3)如圖2,過(guò)F作FH⊥AC,
在△ADE和△CFH中,
,
∴△ADE≌△CFH(AAS),
∴DE=FH,AE=CH,
∴AC=EH,
在△GDE和△GFH中,
∴△GDE≌△GFH(AAS),
∴EG=GH,
∴EG=EH=AC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了對(duì)一棵傾斜的古杉樹(shù)AB進(jìn)行保護(hù),需測(cè)量其長(zhǎng)度.如圖,在地面上選取一點(diǎn)C,測(cè)得∠ACB=45°,AC=21m,∠BAC=53°,求這顆古杉樹(shù)AB的長(zhǎng)度.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC的邊長(zhǎng)為2,過(guò)點(diǎn)B的直線且△ABC與△A′BC′關(guān)于直線l對(duì)稱(chēng),D為線段BC′上一動(dòng)點(diǎn),則AD+CD的最小值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)I是△ABC的內(nèi)心,O是△ABC的外心,∠A=80°,則∠BIC=________,∠BOC=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,根據(jù)圖象解答下列問(wèn)題:
(1)寫(xiě)出方程ax2+bx+c=0的兩個(gè)根;
(2)當(dāng)x為何值時(shí),y>0?當(dāng)x為何值時(shí),y<0?
(3)寫(xiě)出y隨x的增大而減小的自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)驗(yàn)初中組織了“英語(yǔ)手抄報(bào)”征集活動(dòng),現(xiàn)從中隨機(jī)抽取部分作品,按A、B、C、D四個(gè)等級(jí)進(jìn)行評(píng)價(jià),并根據(jù)統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)抽取了_____份作品;
(2)此次抽取的作品中等級(jí)為B的作品有______份,并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共征集到600份作品,請(qǐng)估計(jì)等級(jí)為A的作品約有多少份?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司推出了甲、乙兩種新品飲料,它們都由A、B、C三種溶液組成,只是甲種飲料每瓶裝有200克A溶液,200克B溶液,100克C溶液;乙種飲料每瓶裝有100克A溶液,100克B溶液,300克C溶液,甲、乙兩種飲料每瓶成本價(jià)均為瓶中A、B、C三種溶液的成本價(jià)之和.已知C種溶液每一百克的成本價(jià)為1元,乙種飲料每瓶售價(jià)為10元,利潤(rùn)率為,甲種飲料每瓶的利潤(rùn)率為20%,求這兩種飲料的銷(xiāo)售利潤(rùn)率為24%時(shí),該公司銷(xiāo)售甲、乙兩種飲料的數(shù)量之比是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等邊三角形ABC的頂點(diǎn)B與原點(diǎn)O重合,點(diǎn)C在x軸上,點(diǎn)C坐標(biāo)為(6,0),等邊三角形ABC的三邊上有三個(gè)動(dòng)點(diǎn)D、E、F(不考慮與A、B、C重合),點(diǎn)D從A向B運(yùn)動(dòng),點(diǎn)E從B向C運(yùn)動(dòng),點(diǎn)F從C向A運(yùn)動(dòng),三點(diǎn)同時(shí)運(yùn)動(dòng),到終點(diǎn)結(jié)束,且速度均為1cm/s,設(shè)運(yùn)動(dòng)的時(shí)間為ts,解答下列問(wèn)題:
(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.
(2)如圖②過(guò)點(diǎn)E作EQ∥AB,交AC于點(diǎn)Q,設(shè)△AEQ的面積為S,求S與t的函數(shù)關(guān)系式及t為何值時(shí)△AEQ的面積最大?求出這個(gè)最大值.
(3)在(2)的條件下,當(dāng)△AEQ的面積最大時(shí),平面內(nèi)是否存在一點(diǎn)P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請(qǐng)直接寫(xiě)出P坐標(biāo),若不存在請(qǐng)說(shuō)明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(14分)如圖,已知在矩形ABCD中,AB=a,BC=b,點(diǎn)E是線段AD邊上的任意一點(diǎn)(不含端點(diǎn)A、D),連結(jié)BE、CE.
(1)若a=5,AC=13,求b.
(2)若a=5,b=10,當(dāng)BE⊥AC時(shí),求出此時(shí)AE的長(zhǎng).
(3)設(shè)AE=x,試探索點(diǎn)E在線段AD上運(yùn)動(dòng)過(guò)程中,使得△ABE與△BCE相似時(shí),求a、b應(yīng)滿(mǎn)足什么條件,并求出此時(shí)x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com