【題目】如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結束,且速度均為1cm/s,設運動的時間為ts,解答下列問題:
(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.
(2)如圖②過點E作EQ∥AB,交AC于點Q,設△AEQ的面積為S,求S與t的函數(shù)關系式及t為何值時△AEQ的面積最大?求出這個最大值.
(3)在(2)的條件下,當△AEQ的面積最大時,平面內是否存在一點P,使A、D、Q、P構成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?
【答案】(1)證明見解析;(2)當t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)
【解析】
(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進而表示出AEQ面積,利用二次函數(shù)的性質求出面積最大值,并求出此時Q的坐標即可;(3)當△AEQ的面積最大時,D、E、F都是中點,分兩種情形討論即 可解決問題;
(1)如圖①中,
∵C(6,0),
∴BC=6
在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,
由題意知,當0<t<6時,AD=BE=CF=t,
∴BD=CE=AF=6﹣t,
∴△ADF≌△CFE≌△BED(SAS),
∴EF=DF=DE,
∴△DEF是等邊三角形,
∴不論t如何變化,△DEF始終為等邊三角形;
(2)如圖②中,作AH⊥BC于H,則AH=ABsin60°=3,
∴S△AEC=×3×(6﹣t)=,
∵EQ∥AB,
∴△CEQ∽△ABC,
∴=()2=,即S△CEQ=S△ABC=×9=,
∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,
∵a=﹣<0,
∴拋物線開口向下,有最大值,
∴當t=3時,△AEQ的面積最大為cm2,
(3)如圖③中,由(2)知,E點為BC的中點,線段EQ為△ABC的中位線,
當AD為菱形的邊時,可得P1(3,0),P3(6,3),
當AD為對角線時,P2(0,3),
綜上所述,滿足條件的點P坐標為(3,0)或(6,3)或(0,3).
科目:初中數(shù)學 來源: 題型:
【題目】某文具店去年8月底購進了一批文具1160件,預計在9月份進行試銷.購進價格為每件10元.若售價為12元/件,則可全部售出.若每漲價0.1元.銷售量就減少2件.
(1)求該文具店在9月份銷售量不低于1100件,則售價應不高于多少元?
(2)由于銷量好,10月份該文具進價比8月底的進價每件增加20%,該店主增加了進貨量,并加強了宣傳力度,結果10月份的銷售量比9月份在(1)的條件下的最低銷售量增加了m%,但售價比9月份在(1)的條件下的最高售價減少m%.結果10月份利潤達到3388元,求m的值(m>10).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為 4 的等邊△ABC 中,點 D 從點A 開始在射線 AB 上運動,速度為 1 個單位/秒,點F 同時從 C 出發(fā),以相同的速度沿射線 BC 方向運動,過點D 作 DE⊥AC,連結 DF 交射線 AC 于點 G
(1)當 DF⊥AB 時,求 t 的值;
(2)當點 D 在線段 AB 上運動時,是否始終有 DG=GF?若成立,請說明理由。
(3)聰明的斯揚同學通過測量發(fā)現(xiàn),當點 D 在線段 AB 上時,EG 的長始終等于 AC 的一半,他想當點D 運動到圖 2 的情況時,EG 的長是否發(fā)生變化?若改變,說明理由;若不變,求出 EG 的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE,BE分別交于點G、H.∠CBE=∠BAD,有下列結論:①FD=FE;②AH=2CD;③BCAD=AE2;④S△BEC=S△ADF.其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于給定的函數(shù),自變量取x1,x2時,對應的函數(shù)值分別記為y1,y2.自變量取時.對應的函數(shù)值記為,例如一次函數(shù)y=2x+1,自變量取x1,x2時,對應的函數(shù)值分別為y1=2x1+1,y2=2x2+1,自變量取時,對應的函數(shù)值為=2+1,若對于給定的函數(shù),自變量取x1,x2(x1≠x2)時,總有,則稱函數(shù)為凸凸函數(shù).對于給定的函數(shù)總有,則稱函數(shù)為凹凹函數(shù).對于給定的函數(shù)總有,則稱函數(shù)為平平函數(shù).
(1)求證:函數(shù)y=2x是平平函數(shù);
(2)判斷函數(shù)y=ax2是凸凸函數(shù),凹凹函數(shù)還是平平函數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(探究)如圖1,邊長為a的大正方形中有一個邊長為b的小正方形,把圖1中的陰影部分拼成一個長方形(如圖2所示),通過觀察比較圖2與圖1中的陰影部分面積,可以得到乘法公式 .(用含a,b的等式表示)
(應用)請應用這個公式完成下列各題:
(1)已知4m2=12+n2,2m+n=4,則2m﹣n的值為 .
(2)計算:20192﹣2020×2018.
(拓展)計算:1002﹣992+982﹣972+…+42﹣32+22﹣12.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】幾何作圖時,我們往往依據(jù)以下三個步驟:
①畫草圖分析思路
②設計畫圖步驟
③回答結論并驗證
請你按照以上所述,完成下面的尺規(guī)作圖:已知三條線段h,m,c,求作△ABC,使其BC邊上的高AH=h,中線AD=m,AB=c.
(1)請先畫草圖(畫出一個即可),并敘述簡要的作圖思路(即實現(xiàn)的大致作圖步驟);步驟如下:
(2)完成尺規(guī)作圖(不要求寫作法,作出一個滿足條件的三角形即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題探究
(1)如圖①,在△ABC 中,∠B=30°,E 是 AB 邊上的點,過點 E 作 EF⊥BC 于 F,則的值為 .
(2)如圖②,在四邊形 ABCD 中,AB=BC=6,∠ABC=60°,對角線 BD 平分∠ABC,點E 是對角線 BD 上一點,求 AE+ BE的最小值.
問題解決
(3)如圖③,在平面直角坐標系中,直線 y -x 4 分別于 x 軸,y 軸交于點 A、B,點 P 為直線 AB 上的動點,以 OP 為邊在其下方作等腰 Rt△OPQ 且∠POQ=90°.已知點C(0,-4),點 D(3,0)連接 CQ、DQ,那么DQ CQ是否存在最小值,若存在求出其最小值及此時點 P 的坐標,若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com