計(jì)算:
①8×(-1)2-(-4)+(-3)
②-4
1
3
-5
1
2
+7
1
3
考點(diǎn):有理數(shù)的混合運(yùn)算
專題:計(jì)算題
分析:①只需按照有理數(shù)的混合運(yùn)算的運(yùn)算順序及運(yùn)算法則進(jìn)行運(yùn)算即可.
②先將同分母的放到一起進(jìn)行運(yùn)算,然后將所得的結(jié)果與異分母的進(jìn)行運(yùn)算即可.
解答:解:①原式=8×1+4-3=8+4-3=12-3=9.
②原式=7
1
3
-4
1
3
-5
1
2
=3-5
1
2
=-(5
1
2
-3)=-2
1
2
點(diǎn)評:本題考查的是有理數(shù)的混合運(yùn)算,要按照有理數(shù)的混合運(yùn)算的運(yùn)算順序及運(yùn)算法則進(jìn)行運(yùn)算.在有理數(shù)的加法運(yùn)算中,通常先把互為相反數(shù)的數(shù)放到一起求和,再把同分母的數(shù)放到一起求和,然后把同號的數(shù)放到一起求和,最后求異號兩數(shù)的和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)的圖象經(jīng)過原點(diǎn)及第四象限,若點(diǎn)A(2,-3m)與B(m,-6)都在該函數(shù)圖象上,求這個(gè)函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知A(-3,0),B(-2,-2),將線段AB平移至線段CD,連接AC,BD.
(1)若點(diǎn)C在y軸的正半軸上,點(diǎn)D在第一象限內(nèi),且△ACD面積為5,求點(diǎn)C點(diǎn)D的坐標(biāo);
(2)在y軸上是否存在一點(diǎn)P,使線段AB平移至PQ時(shí),由A、B、Q、P四點(diǎn)構(gòu)成了平行四邊形面積等于10?若存在,請求出P,Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:(1+
1
x-2
)÷
x2-1
x-2
,其中x=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD,AB=CD,AD=CB,P為BA延長線上一點(diǎn),連接PC,證明:
(1)AB∥DC;
(2)∠APC=∠DCP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,BE是∠ABC的平分線,交AC于點(diǎn)E,AD⊥BE,垂足為D,求證:∠BAD=∠C+∠DAC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x滿足x2+
1
x2
+x+
1
x
-3=0,求x+
1
x
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的直徑AB=10cm,弦CD⊥AB于E,CD=6cm.求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠BAC=90°,AB=AC,D為平面內(nèi)一點(diǎn),且∠BDC=90°,若BD=
2
,CD=2
2
,則AD=
 

查看答案和解析>>

同步練習(xí)冊答案