己知直角梯形ABCD中,AD∥BC.∠BCD=90°,BC=CD=2AD,E、F分別是BC、CD邊的中點.連接BF、DF交于點P.連接CP并延長交AB于點Q,連結(jié)AF求證:(1)CP平分∠BCD

(2)四邊形ABED為平行四邊形

(3)△ABF為等腰三角形

(改編)

證明:(1)易證△BCF≌△DCE(SAS)

∴∠FBC=∠EDC,BF=ED

∴△BPE≌△DPF(AAS)

∴BP=DP∴△BPC≌△DPC(SSS)∴∠BCP=∠DCP……2

(2)又∵AD=BE且AB∥BE

四邊形ABED為平行四邊形……2

(3)∵BF=ED,AB=ED∴AB=BF……2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

己知直角梯形ABCD中,AD∥BC.∠BCD=90°,BC=CD=2AD,E、F分別是BC、CD邊的中點.連接BF、DF交于點P.連接CP并延長交AB于點Q,連接AF,求證:
(1)CP平分∠BCD;
(2)四邊形ABED為平行四邊形;
(3)△ABF為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

己知直角梯形ABCD中,ADBC.∠BCD=90°,BC=CD=2ADE、F分別是BCCD邊的中點.連接BF、DE交于點P.連接CP并延長交AB于點Q,連揍AF,下列四個結(jié)論:①CP平分∠BCD;②四邊形ABED為平行四邊形;③CQ將直角梯形ABCD分為面積相等的兩部分;④△ABF為等腰三角形.其中正確的結(jié)論個數(shù)有      (    )

A.1個          B.2個     C.3個       D.4個

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年中考數(shù)學(xué)仿真模擬試卷(二)(解析版) 題型:解答題

己知直角梯形ABCD中,AD∥BC.∠BCD=90°,BC=CD=2AD,E、F分別是BC、CD邊的中點.連接BF、DF交于點P.連接CP并延長交AB于點Q,連接AF,求證:
(1)CP平分∠BCD;
(2)四邊形ABED為平行四邊形;
(3)△ABF為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年浙江省杭州市中考數(shù)學(xué)模擬試卷(48)(解析版) 題型:解答題

己知直角梯形ABCD中,AD∥BC.∠BCD=90°,BC=CD=2AD,E、F分別是BC、CD邊的中點.連接BF、DF交于點P.連接CP并延長交AB于點Q,連接AF,求證:
(1)CP平分∠BCD;
(2)四邊形ABED為平行四邊形;
(3)△ABF為等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案