【題目】南岸區(qū)近年修建和完善了不少道路,其中一段道路兩側(cè)的綠化任務(wù)計劃由甲、乙、丙、丁四個人完成.道路兩側(cè)的植樹數(shù)量相同,如果乙、丙、丁同時開始植樹,丁在道路左側(cè),乙和丙在道路右側(cè),2小時后,甲加入,在道路左側(cè)與丁一起植樹.這樣恰好能保證道路兩側(cè)的植樹任務(wù)同時完成.已知甲、乙、丙、丁每小時能完成的植樹數(shù)量分別為6、7、8、10棵.實際在植樹時,四人一起開始植樹,甲和丁在道路左側(cè)、乙和丙在道路右側(cè),為保證右側(cè)比左側(cè)提前5小時完成植樹任務(wù),甲中途轉(zhuǎn)到右側(cè)與乙和丙一起按要求完成了任務(wù),左側(cè)剩下的任務(wù)由丁獨(dú)自完成、則在本次植樹任務(wù)中,甲比丁少植樹_____棵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 邊長為的正方形的對角線與交于點(diǎn), 將正方形沿直線折疊, 點(diǎn)C落在對角線的點(diǎn)處,折痕交于點(diǎn),交于點(diǎn),則的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AE是⊙O的弦,C是弧AE的中點(diǎn),弦CG⊥AB于點(diǎn)D,交AE于點(diǎn)F,過點(diǎn)C作⊙O的切線,交BA延長線于點(diǎn)P,連接BE
(1)求證:PC∥AE;
(2)若sin∠P=,CF=5,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】大數(shù)學(xué)家歐拉非常推崇觀察能力,他說過,今天已知的許多數(shù)的性質(zhì),大部分是通過觀察發(fā)現(xiàn)的,歷史上許多大家,都是天才的觀察家,化歸就是將面臨的新問題轉(zhuǎn)化為已經(jīng)熟悉的規(guī)范問題的數(shù)學(xué)方法,這是一種具有普遍適用性的數(shù)學(xué)思想方法.如多項式除以多項式可以類比于多位數(shù)的除法進(jìn)行計算:
請用以上方法解決下列問題:
(1)計算:(x3+2x2﹣3x﹣10)÷(x﹣2);
(2)若關(guān)于x的多項式2x4+5x3+ax2+b能被二項式x+2整除,且a,b均為自然數(shù),求滿足以上條件的a,b的值及相應(yīng)的商.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高學(xué)生身體素質(zhì),某校決定開展足球、籃球、排球、兵乓球等四項課外體育活動,要求全員參與,并且每名學(xué)生只能選擇其中一項.為了解選擇各種體育活動項目的學(xué)生人數(shù),該校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制出如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:
(1)直接寫出這次抽樣調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計圖;
(3)若該學(xué)??cè)藬?shù)是1500人,請估計選擇籃球項目的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校決定加強(qiáng)羽毛球、籃球、乒乓球、排球、足球五項球類運(yùn)動,每位同學(xué)必須且只能選擇一項球類運(yùn)動,對該校學(xué)生隨機(jī)抽取進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:
運(yùn)動項目 | 頻數(shù)(人數(shù)) |
羽毛球 | 30 |
籃球 | |
乒乓球 | 36 |
排球 | |
足球 | 12 |
請根據(jù)以上圖表信息解答下列問題:
(1)頻數(shù)分布表中的 , ;
(2)在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為 度;
(3)全校有多少名學(xué)生選擇參加乒乓球運(yùn)動?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O,分別交BC,AC于點(diǎn)D,E,過點(diǎn)D作DF⊥AC于點(diǎn)F
(1)求證:DF是⊙O的切線;
(2)若∠C=60°,⊙O的半徑為2,求由弧DE,線段DF,EF圍成的陰影部分的面積(結(jié)果保留根號和π)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com