【題目】綜合與實(shí)踐:

問題情境:在矩形ABCD中,點(diǎn)EBC邊的中點(diǎn),將△ABE沿直線AE翻折,使點(diǎn)B與點(diǎn)F重合,直線AF交直線CD于點(diǎn)G

特例探究

實(shí)驗(yàn)小組的同學(xué)發(fā)現(xiàn):

1)如圖1,當(dāng)ABBC時(shí),AGBC+CG,請(qǐng)你證明該小組發(fā)現(xiàn)的結(jié)論;

2)當(dāng)ABBC4時(shí),求CG的長;

延伸拓展

3)實(shí)知小組的同學(xué)在實(shí)驗(yàn)小組的啟發(fā)下,進(jìn)一步探究了當(dāng)ABBC時(shí),線段AGBC、CG之間的數(shù)量關(guān)系,請(qǐng)你直接寫出實(shí)知小組的結(jié)論.

【答案】1)證明見解析;(21;(3AGBC+CG

【解析】

1)連接EG,由折疊的性質(zhì)可證RtEGFRtEGC,然后利用全等三角形的性質(zhì)有FGGC,則結(jié)論可證;

2)由全等三角形和折疊的性質(zhì)可證△ABE∽△ECG,利用相似三角形的性質(zhì)有,已知ECCG可求.

3)由全等三角形的性質(zhì)可知ABAF, FGGC,再利用AB、BC之間的關(guān)系即可得出答案.

解:(1)如圖1中,連接EG

∵△AEF是由△AEB翻折得到,

EBEFEC,ABAF,∠AFE=∠B=∠C90°,

RtEGFRtEGC,

RtEGFRtEGCHL),

FGGC,

ABAFBC,

AGAF+FGBC+CG

2)∵△EGF≌△EGC,

∴∠GEF=∠GEC

∵∠AEB=∠AEF,∠BEC180°

∴∠AEG90°,

∴∠AEB+GEC90°,∠AEB+BAE90°,

∴∠GEC=∠BAE

∵∠B=∠C,

∴△ABE∽△ECG

EC2,

CG1

3)如圖2中,連接EG

∵△AEB≌△AEF,△EGF≌△EGC

ABAF,BEEFEC,FGGC,

ABBC 2,

ABBC

AGAF+FGAB+CGBC+CG

AGBC+CG

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解七年級(jí)學(xué)生最喜歡的學(xué)科,從七年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行“我最喜歡的學(xué)科(語文、數(shù)學(xué)、外語)”試卷調(diào)查,請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:

1)本次抽樣調(diào)查共抽取了   名學(xué)生;最喜歡“外語”的學(xué)生有   人;

2)如果該學(xué)校七年級(jí)有500人,那么最喜歡外語學(xué)科的人數(shù)大概有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象相交于點(diǎn).

1)求出反比例函數(shù)的表達(dá)式并直接寫出的值;

2)根據(jù)圖象,直接寫出時(shí),的取值范圍;

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于A,B兩點(diǎn),A點(diǎn)的坐標(biāo)為B點(diǎn)的坐標(biāo)為,連接,過B軸,垂足為C

1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

2)在射線上是否存在一點(diǎn)D,使得是直角三角形,求出所有可能的D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A在拋物線yx2bxcb>0)上,且A(1,-1),

(1)若bc=4,bc的值;

(2)若該拋物線與y軸交于點(diǎn)B,其對(duì)稱軸與x軸交于點(diǎn)C,則命題“對(duì)于任意的一個(gè)k0<k1),都存在b,使得OCk·OB.”是否正確?若正確,請(qǐng)證明;若不正確,請(qǐng)舉反例;

(3)將該拋物線平移,平移后的拋物線仍經(jīng)過(1,-1),點(diǎn)A的對(duì)應(yīng)點(diǎn)A1

(1-m,2b-1).當(dāng)m時(shí),求平移后拋物線的頂點(diǎn)所能達(dá)到的最高點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩運(yùn)動(dòng)員的射擊成績(靶心為10環(huán))統(tǒng)計(jì)如下表(不完全):

運(yùn)動(dòng)員 \ 環(huán)數(shù) \ 次數(shù)

1

2

3

4

5

10

8

9

10

8

10

9

9

a

b

某同學(xué)計(jì)算出了甲的成績平均數(shù)是9,方差是 [(109)2(89)2(99)2(109)2(89)2]0.8,

請(qǐng)作答:

1)若甲、乙射擊成績平均數(shù)都一樣,則ab   

2)在(1)的條件下,當(dāng)甲比乙的成績較穩(wěn)定時(shí),請(qǐng)列舉出a,b的所有可能取值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,CB三地依次在一條筆直的道路上甲、乙兩車同時(shí)分別從A,B兩地出發(fā),相向而行.甲車從A地行駛到B地就停止,乙車從B地行駛到A地后,立即以相同的速度返回B地,在整個(gè)行駛的過程中,甲、乙兩車均保持勻速行駛,甲、乙兩車距C地的距離之和ykm)與甲車出發(fā)的間(b)之間的函數(shù)關(guān)系如圖所示,則甲車到達(dá)B地時(shí),乙車距B地的距離為_____km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線yax2+bx+c的圖象如圖所示,那么一次函數(shù)ybx+b24ac與反比例函數(shù)y在同一坐標(biāo)系內(nèi)的圖象大致是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)工程隊(duì)分別同時(shí)開挖兩段河渠,所挖河渠的長度y(m)與挖掘時(shí)間x(h)之間的關(guān)系如圖所示.根據(jù)圖象所提供的信息有:①甲隊(duì)挖掘30m時(shí),用了3h;②挖掘6h時(shí)甲隊(duì)比乙隊(duì)多挖了10m;③乙隊(duì)的挖掘速度總是小于甲隊(duì);④開挖后甲、乙兩隊(duì)所挖河渠長度相等時(shí),x=4.其中一定正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案