【題目】如圖,平行四邊形ABCD中,過A作AM⊥BC于M,交BD于E,過C作CN⊥AD于N,交BD于F,連結(jié)AF、CE.

(1)求證:△ABE≌△CDF;

(2)當(dāng)四邊形ABCD滿足什么條件時(shí),四邊形AECF是菱形?證明你的結(jié)論.

【答案】(1)證明見解析;(2)四邊形ABCD是菱形時(shí),四邊形AECF是菱形,證明見解析.

【解析】(1)根據(jù)ABCD為平行四邊形,得到AD與BC平行且相等,由AM垂直于BC,CN垂直于AD,得到AM與CN平行,再由平行四邊形ABCD,得到BC與AD平行,BC=AD,進(jìn)而確定出AMCN為平行四邊形,利用平行四邊形的對邊相等得到AN=CM,進(jìn)而得到DN=BM,利用ASA得證;(2)利用菱形的性質(zhì)可得AC⊥EF,由全等三角形的性質(zhì)

可得AE=CF,由平行四邊形的判定定理可得四邊形AECF為平行四邊形,利用菱形的判定定理得出結(jié)論.

證明:(1)∵四邊形ABCD為平行四邊形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∠BAD=∠BCD,

∵M(jìn)A⊥AN,NC⊥BC,∴∠BAM=∠DCN,

在△ABE和△CDF中,

∠ABE=∠CDF,AB=CD,∠BAM=∠DCN,

∴△ABE≌△CDF(SAS);

(2)四邊形ABCD是菱形時(shí),四邊形AECF是菱形.

∵△ABE≌△CDF,∴AE=CF,

∵M(jìn)A⊥AN,NC⊥BC,∴AM∥CN,∴四邊形AECF為平行四邊形,

∵四邊形ABCD是菱形,∴AC⊥EF,∴四邊形AECF為菱形.

“點(diǎn)睛”此題考查了平行四邊形和菱形判定與性質(zhì),以及全等三角形的判定與性質(zhì),熟練掌握平行四邊形的判定與性質(zhì)是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2開始,連續(xù)的偶數(shù)相加,它們的和的情況如下表:

(1)按這個(gè)規(guī)律,當(dāng)m=10時(shí),和為__;

(2)從2開始,m個(gè)連續(xù)偶數(shù)相加,它們的和Sm之間的關(guān)系,用公式表示出來為:________________________________________

(3)應(yīng)用上述公式計(jì)算:

2+4+6++100

108+210+212++300

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列因式分解正確的是( )
A.a(x+y)=ax+ay
B.10t2﹣5t=5t(2t﹣1)
C.y2﹣4y+3=(y﹣2)2﹣1
D.x2﹣16+3x=(x+4)(x﹣4)+3x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)x,y滿足|5x|+y1120,則以x,y的值為兩邊長的等腰三角形腰長是( 。

A.5B.11C.5 11D.以上答案均不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題

(1)

(2)

(3)

(4)

(5)

(6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:已知△ABC在方格紙中的位置

如圖所示,每個(gè)小方格的邊長為1個(gè)單位長度.

ABC向右平移4個(gè)單位長度得到A1B1C1,請你畫出△A1B1C1;

ABC與△A2B2C2關(guān)于原點(diǎn)O對稱,請你畫出△A2B2C2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程5x+3k=21與5x+3=0的解相同,則k的值是(
A.﹣10
B.7
C.﹣9
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某潛水艇從海平面以下27米處上升到海平面以下l9米處,則此潛水艇上升了__.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)角的補(bǔ)角是它的余角的4倍,則這個(gè)角等于度.

查看答案和解析>>

同步練習(xí)冊答案