【題目】為提升學(xué)生的藝術(shù)素養(yǎng),學(xué)校計劃開設(shè)四門藝術(shù)選修課:A.書法;B.繪畫;C.樂器;D.舞蹈.為了解學(xué)生對四門功課的喜歡情況,在全校范圍內(nèi)隨機抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).將數(shù)據(jù)進(jìn)行整理,并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有多少人?扇形統(tǒng)計圖中∠α的度數(shù)是多少?
(2)請把條形統(tǒng)計圖補充完整;
(3)學(xué)校為舉辦2018年度校園文化藝術(shù)節(jié),決定從A.書法;B.繪畫;C.樂器;D.舞蹈四項藝術(shù)形式中選擇其中兩項組成一個新的節(jié)目形式,請用列表法或樹狀圖求出選中書法與樂器組合在一起的概率.
【答案】(1)本次調(diào)查的學(xué)生總?cè)藬?shù)為40人,∠α=108°;(2)補圖見解析;(3)書法與樂器組合在一起的概率為.
【解析】(1)用A科目人數(shù)除以其對應(yīng)的百分比可得總?cè)藬?shù),用360°乘以C對應(yīng)的百分比可得∠α的度數(shù);
(2)用總?cè)藬?shù)乘以C科目的百分比即可得出其人數(shù),從而補全圖形;
(3)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出恰好是“書法”“樂器”的結(jié)果數(shù),然后根據(jù)概率公式求解.
(1)本次調(diào)查的學(xué)生總?cè)藬?shù)為4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;
(2)C科目人數(shù)為40×(1﹣10%﹣20%﹣40%)=12人,
補全圖形如下:
(3)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中恰好是書法與樂器組合在一起的結(jié)果數(shù)為2,
所以書法與樂器組合在一起的概率為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為BC的中點,E為AB上一點,DF⊥DE交AC于點F,延長ED至點G,使GD=ED,連接CG.
(1)求證:BE=CG;
(2)求證:BE+CF>EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家,數(shù)學(xué)教育家.楊輝三角是楊輝的一大重要研究成果,其中蘊含了許多優(yōu)美的規(guī)律.古今中外,許多的數(shù)學(xué)家都曾對其深入研究過,并將研究結(jié)果應(yīng)用于實踐.其中楊輝三角如下
(1)第5行的數(shù)和為________
(2)觀察每行數(shù)的和,并歸納出第行數(shù)的和為________
(3)第三斜行的數(shù)分別為1,3,6,10,…,請依此規(guī)律寫出第5個數(shù)為 .請歸納得出第三斜行第個數(shù)的表達(dá)式________(用含有的表達(dá)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y=(k>0)的圖象與半徑為5的⊙O交于M、N兩點,△MON的面積為3.5,若動點P在x軸上,則PM+PN的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校九年級學(xué)生立定跳遠(yuǎn)水平,隨機抽取該年級50名學(xué)生進(jìn)行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
學(xué)生立定跳遠(yuǎn)測試成績的頻數(shù)分布表
分組 | 頻數(shù) |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
請根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中a= ,b= ,樣本成績的中位數(shù)落在 范圍內(nèi);
(2)請把頻數(shù)分布直方圖補充完整;
(3)該校九年級共有1000名學(xué)生,估計該年級學(xué)生立定跳遠(yuǎn)成績在2.4≤x<2.8范圍內(nèi)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=120,AD⊥BC,且AD=AB.
(1)如圖1,DE⊥AB,DF⊥AC,垂足分別為點E,F(xiàn),求證:AE+AF=AD
(2)如圖2,如果∠EDF=60,且∠EDF兩邊分別交邊AB,AC于點E,F(xiàn),那么線段AE,AF,AD之間有怎樣的數(shù)量關(guān)系?并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:對于一個數(shù)x,我們把[x]稱作x的相伴數(shù);若x≥0,則[x]=x﹣1;若x<0,則[x]=x+1.例:[0.5]=﹣0.5.
(1)求[]、[﹣1]的值;
(2)當(dāng)a>0,b<0時,有[a]=[b],試求代數(shù)式(b﹣a)3﹣3a+3b的值;
(3)解方程:[x]+[x+2]=1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】英才中學(xué)為了解中考體育科目訓(xùn)練情況從全校九年級學(xué)生中隨機抽取了部分學(xué)生進(jìn)行一次中考體育科目測試(把測試結(jié)果分為四個等級.A級:優(yōu)秀;B級:良好;C級:合格;D級:不合格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽樣測試的學(xué)生人數(shù)是 人.
(2)圖2中條形統(tǒng)計圖C級的人數(shù)是 人;
(3)該校九年級有學(xué)生500名,如果全部參加這次中考體育科目測試,請估計不及格的人數(shù)約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一些相同的房間需要粉刷,一天3名師傅去粉刷8個房間,結(jié)果其中有40m2墻面未來得及刷;同樣的時間內(nèi)5名徒弟粉刷了9個房間的墻面。每名師傅比徒弟一天多刷30m2的墻面。
(1)求每個房間需要粉刷的墻面面積;
(2)張老板現(xiàn)有36個這樣的房間需要粉刷,若請1名師傅帶2名徒弟去,需要幾天完成?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com