【題目】如圖,四邊形OBCD中的三個頂點在⊙O上,點A是優(yōu)弧BD上的一個動點(不與點B、D重合).

(1)當圓心O在∠BAD內部,∠ABO+ADO=50°時,∠A =   °;

(2)當圓心O在∠BAD內部,四邊形OBCD為平行四邊形時,求∠C的度數(shù);

(3)當圓心O在∠BAD外部,四邊形OBCD為平行四邊形時,請直接寫出∠ABO與∠ADO的數(shù)量關系.

【答案】500;(2)1200;(3)|∠ABOADO|=60°

【解析】

1)連接OA,如圖1根據(jù)等腰三角形的性質得∠OAB=ABO,OAD=ADO,BAD=OAB+∠OAD=ABO+∠ADO=50°;

2)根據(jù)平行四邊形的性質得∠BOD=BCD,再根據(jù)圓周角定理得∠BOD=2BAD,則∠BCD=2BAD,然后根據(jù)圓內接四邊形的性質由∠BCD+∠BAD =180°,易計算出∠BAD的度數(shù),從而得出結論;

3)討論當∠OAB比∠ODA小時,如圖2,與(1)一樣∠OAB=ABO,OAD=ADO,則∠OADOAB=ADOABO=BAD,由(2)得∠BAD=60°,所以∠ADOABO=60°;當∠OAB比∠ODA大時用樣方法得到∠ABOADO=60°.

1)連接OA,如圖1

OA=OBOA=OD

∵∠OAB=ABO,OAD=ADOBAD=OAB+∠OAD=ABO+∠ADO=50°;

2∵四邊形OBCD為平行四邊形∴∠BOD=BCD

∵∠BOD=2BAD,∴∠BCD=2BAD

∵∠BCD+∠BAD =180°,3BAD =180°,∴∠BAD =60°,∴∠C=180°-60°=120°;

3)當∠OAB比∠ODA小時,如圖2

OA=OBOA=OD

∵∠OAB=ABO,OAD=ADO∴∠OADOAB=ADOABO=BAD,由(2)得∠BAD=60°,∴∠ADOABO=60°;

當∠OAB比∠ODA大時同理可得∠ABOADO=60°.

綜上所述|∠ABOADO|=60°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋里裝著只有顏色不同的黑、白兩種顏色的球共20只,某學習小組作摸球實驗,將球攪勻后從中隨機摸出一個球記下顏色,再把它放回袋中,不斷重復,下表示活動進行中的一組統(tǒng)計數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到白球的次數(shù)m

58

96

116

295

484

601

摸到白球的頻率

0.58

0.64

0.58

0.59

0.605

0.601

請估算口袋中白球約是(   )只.

A. 8 B. 9 C. 12 D. 13

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠DAB=∠CAE,ADAB,ACAE

1)求證△ABE≌△ADC;

2)設BECD交于點O,∠DAB30°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程

(1)試證:無論m取任何實數(shù),方程都有兩個不相等的實數(shù)根.

(2)若方程有一個根為-4,求m的值及另一根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,E,,DAE上的一點,且,連接BD,CD

試判斷BDAC的位置關系和數(shù)量關系,并說明理由;

如圖2,若將繞點E旋轉一定的角度后,試判斷BDAC的位置關系和數(shù)量關系是否發(fā)生變化,并說明理由;

如圖3,若將中的等腰直角三角形都換成等邊三角形,其他條件不變.

試猜想BDAC的數(shù)量關系,請直接寫出結論;

你能求出BDAC的夾角度數(shù)嗎?如果能,請直接寫出夾角度數(shù);如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果將四根木條首尾相連,在相連處用螺釘連接,就能構成一個平面圖形.如圖1是一個四邊形的木架,ABAD2cm,BC5cm.

(1)扭動這個木架,四邊形的形狀就會改變,這說明了什么?

(2)如圖2,若固定三根木條AB、BC、AD不動,量得第四根木條CD5cm,判斷此時∠B與∠D是否相等,并說明理由.

(3)在扭動這個木架過程中,當測得A、C之間的距離為6cm時,若CD的長度也是整數(shù),那么CD的長應為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,有以下結論:

;②;③;④;⑤

其中所有正確結論的序號是(

A. ①②④ B. ①③④ C. ②③⑤ D. ①②④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們新定義一種三角形:兩邊平方和等于第三邊平方的兩倍的三角形叫做奇異三角形.

根據(jù)奇異三角形的定義,小華提出命題等邊三角形一定是奇異三角形是真命題還是假命題?

中,,,若是奇異三角形,求

如圖,的直徑,上一點(不與點、重合),是半圓的中點,、在直徑的兩側,若在內存在點,使,

求證:是奇異三角形;

是直角三角形時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠甲、乙兩名工人參加操作技能培訓.現(xiàn)分別從他們在培訓期間參加的若干次測試成績中隨機抽取8次,記錄如下:

95

82

88

81

93

79

84

78

83

92

80

95

90

80

85

75

(1)請你計算這兩組數(shù)據(jù)的平均數(shù)、中位數(shù);

(2)現(xiàn)要從中選派一人參加操作技能比賽,從統(tǒng)計學的角度考慮,你認為選派哪名工人參加合適?請說明理由.

查看答案和解析>>

同步練習冊答案