【題目】已知關于x的一元二次方程

(1)試證:無論m取任何實數(shù),方程都有兩個不相等的實數(shù)根.

(2)若方程有一個根為-4,求m的值及另一根.

【答案】(1)詳見解析;(2)m=-3,x=0.

【解析】

1)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=(m+32+160,由此即可證出無論m取任何實數(shù)方程都有兩個不相等的實數(shù)根;

2設方程的另一根為a,利用根與系數(shù)的關系即可求出方程的另一根和m的值,此題得解

1=[﹣(m1]24×1×[2m+3]=m2+6m+25=(m+32+16

m+320,m+32+160即△>0,∴無論m取任何實數(shù),方程都有兩個不相等的實數(shù)根

2設方程的另一根為a,解得:m=﹣3,a=0

m的値為﹣3,方程的另一根為0

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務精神,傳播“奉獻他人、提升自我”的志愿服務理念,東營市某中學利用周末時間開展了“助老助殘、社區(qū)服務、生態(tài)環(huán)保、網(wǎng)絡文明”四個志愿服務活動(每人只參加一個活動),九年級某班全班同學都參加了志愿服務,班長為了解志愿服務的情況,收集整理數(shù)據(jù)后,繪制以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)求該班的人數(shù);

(2)請把折線統(tǒng)計圖補充完整;

(3)求扇形統(tǒng)計圖中,網(wǎng)絡文明部分對應的圓心角的度數(shù);

(4)小明和小麗參加了志愿服務活動,請用樹狀圖或列表法求出他們參加同一服務活動的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的角平分線,,垂足為,的面積分別是6040,則的面積( )

A.8B.10C.12D.20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某市有一塊長為(3a+b)米、寬為(2a+b)米的長方形地塊,中間是邊長為(a+b)米的正方形,規(guī)劃部門計劃將在中間的正方形修建一座雕像,四周的陰影部分進行綠化.

(1)綠化的面積是多少平方米?(用含字母a、b的式子表示)

(2)求出當a=10,b=12時的綠化面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,∠ACB的平分線交⊙O于點D.AC=6,BC=8,則BD=__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABPACQ,BPCQ.

(1)求證:△ABP≌△ACQ;

(2)請判斷△APQ是什么三角形,試說明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OBCD中的三個頂點在⊙O上,點A是優(yōu)弧BD上的一個動點(不與點B、D重合).

(1)當圓心O在∠BAD內(nèi)部,∠ABO+ADO=50°時,∠A =   °;

(2)當圓心O在∠BAD內(nèi)部,四邊形OBCD為平行四邊形時,求∠C的度數(shù);

(3)當圓心O在∠BAD外部,四邊形OBCD為平行四邊形時,請直接寫出∠ABO與∠ADO的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形的頂點,與正方形的頂點,同在一段拋物線上,且拋物線的頂點同時落在軸上,正方形邊同時落在軸上,若正方形的邊長為,則正方形的邊長為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知A1,A2,A3,…Anx軸上的點,且OA1=A1A2=A2A3=A3A4=…=An-1An=1,分別過點A1,A2,A3,…An′x軸的垂線交二次函數(shù)(x>0)的圖象于點P1,P2,P3,…Pn,若記OA1P1的面積為S1,過點P1P1B1A2P2于點B1,記P1B1P2的面積為S2,過點P2P2B2A3P3于點B2,記P2B2P3的面積為S3,…依次進行下去,最后記Pn-1Bn-1Pn(n>1)的面積為Sn,則Sn=( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案