【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則以下結(jié)論同時成立的是
A. B. C. D.
【答案】C
【解析】
利用拋物線開口方向得到a>0,利用拋物線的對稱軸在直線x=1的右側(cè)得到b<0,b<-2a,即b+2a<0,利用拋物線與y軸交點在x軸下方得到c<0,也可判斷abc>0,利用拋物線與x軸有2個交點可判斷b2-4ac>0,利用x=1可判斷a+b+c<0,利用上述結(jié)論可對各選項進行判斷.
∵拋物線開口向上,
∴a>0,
∵拋物線的對稱軸在直線x=1的右側(cè),
∴x=->1,
∴b<0,b<-2a,即b+2a<0,
∵拋物線與y軸交點在x軸下方,
∴c<0,
∴abc>0,
∵拋物線與x軸有2個交點,
∴△=b2-4ac>0,
∵x=1時,y<0,
∴a+b+c<0.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個案例,請補充完整.
原題:如圖1,在△ABC中,點D,E,Q分別在AB,AC,BC上,且DE∥BC,AQ交DE于點P,求證:=.
(1)嘗試探究:在圖1中,由DP∥BQ,得△ADP___△ABQ(填“≌”或“∽”),則=___,同理可得=,從而=;
(2)類比延伸:如圖2,在△ABC中,∠BAC=90°,正方形DEFG的四個頂點在△ABC的邊上,連接AG,AF分別交DE于M,N兩點,若AB=AC=1,則MN的長為_____;
(3)拓展遷移:如圖3,在△ABC中,∠BAC=90°,正方形DEFG的四個頂點在△ABC的邊上,連接AG,AF分別交DE于M,N兩點,AB<AC,求證:MN2=DM·EN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.
(1)求證:PA是⊙O的切線;
(2)若OH⊥AC,OH=1,求DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以40m/s的速度將小球沿與地面成30°角的方向擊出時,小球的飛行路線是一條拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系h=20t﹣5t2.
(1)求小球飛行3s時的高度;
(2)問:小球的飛行高度能否達(dá)到22m?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的12×12網(wǎng)格中建立平面直角坐標(biāo)系,格點△ABC(頂點是網(wǎng)格線的交點)的坐標(biāo)分別是A(﹣2,2),B(﹣3,1),C(﹣1,0).
(1)將△ABC繞點O逆時針旋轉(zhuǎn)90°得到△DEF,畫出△DEF;
(2)以O為位似中心,將△ABC放大為原來的2倍,在網(wǎng)格內(nèi)畫出放大后的△A1B1C1,若P(x,y)為△ABC中的任意一點,這次變換后的對應(yīng)點P1的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知A(2,0),B(1,-1),將線段OA繞點O逆時針旋轉(zhuǎn),旋轉(zhuǎn)角為(0°<<135°).記點A的對應(yīng)點為A1,若點A1與點B的距離為,則為( ).
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李的活魚批發(fā)店以44元/公斤的價格從港口買進一批2000公斤的某品種活魚,在運輸過程中,有部分魚未能存活,小李對運到的魚進行隨機抽查,結(jié)果如表一.由于市場調(diào)節(jié),該品種活魚的售價與日銷售量之間有一定的變化規(guī)律,表二是近一段時間該批發(fā)店的銷售記錄.
(1)請估計運到的2000公斤魚中活魚的總重量;(直接寫出答案)
(2)按此市場調(diào)節(jié)的觀律,
①若該品種活魚的售價定為52.5元/公斤,請估計日銷售量,并說明理由;
②考慮到該批發(fā)店的儲存條件,小李打算8天內(nèi)賣完這批魚(只賣活魚),且售價保持不變,求該批發(fā)店每日賣魚可能達(dá)到的最大利潤,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用小立方體搭一個幾何體,使它的主視圖和俯視圖如圖所示,俯視圖中小正方形中字母表示在該位置小立方體的個數(shù),請解答下列問題:
(1)求的值;
(2)這個幾何體最少有幾個小立方體搭成,最多有幾個小立方體搭成;
(3)當(dāng)時畫出這個幾何體的左視圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB是⊙O的直徑,PA與⊙O相切于點A,BP與⊙O相交于點D,C為⊙O上的一點,分別連接CB、CD,∠BCD=60°.
(1)求∠ABD的度數(shù);
(2)若AB=6,求PD的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com