【題目】已知:如圖,在中,,,.點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以的速度移動(dòng),同時(shí)點(diǎn)從點(diǎn)開(kāi)始沿邊向點(diǎn)以的速度移動(dòng).當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí)另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,
求 秒后, 的面積等于
求 秒后,的長(zhǎng)度等于
運(yùn)動(dòng)過(guò)程中,四邊形APQC的面積能否等于?說(shuō)明理由.
【答案】(1)2或3秒后;(2)0或2秒后;(3)不能.
【解析】
(1)設(shè)經(jīng)過(guò)x秒鐘,△PBQ的面積等于6平方厘米,根據(jù)點(diǎn)P從A點(diǎn)開(kāi)始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從B點(diǎn)開(kāi)始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),表示出BP和BQ的長(zhǎng)可列方程求解;
(2)根據(jù)PQ=5,利用勾股定理BP2+BQ2=PQ2,求出即可;
(3)通過(guò)判定得到的方程的根的判別式即可判定能否達(dá)到.
解:(1)設(shè)經(jīng)過(guò)x秒以后△PBQ面積為6,
,
整理得:x2-5x+6=0,
解得:,,
答:2或3秒后△PBQ的面積等于6cm2;
(2)當(dāng)PQ=5時(shí),在Rt△PBQ中,
∵BP2+BQ2=PQ2,
∴(5-t)2+(2t)2=52,
5t2-10t=0,
t(5t-10)=0,
t1=0,t2=2,
答:當(dāng)t=0或2時(shí),PQ的長(zhǎng)度等于5cm.
(3)設(shè)經(jīng)過(guò)x秒以后四邊形APQC面積為,
- ,
整理得:x2-5x+8=0,
∵△=25-40=-15<0,
∴四邊形APQC的面積不能等于.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近些年全國(guó)各地頻發(fā)霧霾天氣,給人民群眾的身體健康帶來(lái)了危害,某商場(chǎng)看到商機(jī)后決定購(gòu)進(jìn)甲、乙兩種空氣凈化器進(jìn)行銷(xiāo)售.若每臺(tái)甲種空氣凈化器的進(jìn)價(jià)比每臺(tái)乙種空氣凈化器的進(jìn)價(jià)少300元,且用6000元購(gòu)進(jìn)甲種空氣凈化器的數(shù)量與用7500元購(gòu)進(jìn)乙種空氣凈化器的數(shù)量相同.
(1)求每臺(tái)甲種空氣凈化器、每臺(tái)乙種空氣凈化器的進(jìn)價(jià)分別為多少元?
(2)若該商場(chǎng)準(zhǔn)備進(jìn)貨甲、乙兩種空氣凈化器共30臺(tái),且進(jìn)貨花費(fèi)不超過(guò)42000元,問(wèn)最少進(jìn)貨甲種空氣凈化器多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩座建筑物的水平距離BC為78m,從甲的頂部A處測(cè)得乙的頂部D處的俯角為48°,測(cè)得底部C處的俯角為58°,求乙建筑物的高度CD.(結(jié)果取整數(shù),參考數(shù)據(jù):tan58°≈1.60,tan48°≈1.11).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】足球世界杯預(yù)選賽實(shí)行主客場(chǎng)的循環(huán)賽,即每?jī)芍蜿?duì)都要在自己的主場(chǎng)和客場(chǎng)踢一場(chǎng).共舉行比賽場(chǎng),則參加比賽的球隊(duì)共有________支.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下定義:如果⊙C的半徑為r,⊙C外一點(diǎn)P到⊙C的切線長(zhǎng)小于或等于2r,那么點(diǎn)P叫做⊙C的“離心點(diǎn)”.
(1)當(dāng)⊙O的半徑為1時(shí),
①在點(diǎn)P1(, ),P2(0,-2),P3(,0)中,⊙O的“離心點(diǎn)”是 ;
②點(diǎn)P(m,n)在直線上,且點(diǎn)P是⊙O的“離心點(diǎn)”,求點(diǎn)P橫坐標(biāo)m的取值范圍;
(2)⊙C的圓心C在y軸上,半徑為2,直線與x軸、y軸分別交于點(diǎn)A,B. 如果線段AB上的所有點(diǎn)都是⊙C的“離心點(diǎn)”,請(qǐng)直接寫(xiě)出圓心C縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將含30°角的直角三角尺ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)150°后得到△EBD,連接CD.若AB=4cm.則△BCD的面積為( )
A. 4 B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】同一直線上有兩條等長(zhǎng)的線段,(在左邊,在左邊),點(diǎn),分別是線段,的中點(diǎn).若,,則__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知多項(xiàng)式是關(guān)于的二次二項(xiàng)式.
(1)請(qǐng)?zhí)羁眨?/span>______;______;______;
(2)如圖,若,兩點(diǎn)在線段上,且,,兩點(diǎn)分別是線段,的中點(diǎn),且,求線段的長(zhǎng);
(3)如圖,若,,分別是數(shù)軸上,,三點(diǎn)表示的數(shù),點(diǎn)與點(diǎn)到原點(diǎn)的距離相等,且位于原點(diǎn)兩側(cè),現(xiàn)有兩動(dòng)點(diǎn)和在數(shù)軸上同時(shí)開(kāi)始運(yùn)動(dòng),其中點(diǎn)先以2個(gè)單位每秒的速度從點(diǎn)運(yùn)動(dòng)到點(diǎn),再以5個(gè)單位每秒的速度運(yùn)動(dòng)到點(diǎn),最后以8個(gè)單位每秒的速度返回到點(diǎn)停止運(yùn)動(dòng);而動(dòng)點(diǎn)先以2個(gè)單位每秒的速度從點(diǎn)運(yùn)動(dòng)到點(diǎn),再以12個(gè)單位每秒的速度返回到點(diǎn)停止運(yùn)動(dòng).在此運(yùn)動(dòng)過(guò)程中,,兩點(diǎn)到點(diǎn)的距離是否會(huì)相等?若相等,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)在數(shù)軸上表示的數(shù);若不相等,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,對(duì)角線AC⊥CD,點(diǎn)E在邊BC上,且∠AEB=45°,CD=10.
(1)求AB的長(zhǎng);
(2)求EC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com