【題目】如圖,弓形ABC中,∠BAC=60°,BC=2,若點(diǎn)P在優(yōu)弧BAC上由點(diǎn)B向點(diǎn)C移動(dòng),記△PBC的內(nèi)心為I,點(diǎn)I隨點(diǎn)P的移動(dòng)所經(jīng)過的路程為m,則m的取值范圍為_____.
【答案】0<m<.
【解析】
可設(shè)I為△PBC的內(nèi)心連接BI,利用點(diǎn)I的軌跡是以點(diǎn)D為圓心,2為半徑的弧CIB(不含點(diǎn)C、B),可求出弧CIB的長(zhǎng)為,進(jìn)而求出m的取值范圍.
如圖,
將圓補(bǔ)全,過點(diǎn)O作OD⊥BC交⊙O于點(diǎn)D,設(shè)I為△PBC的內(nèi)心連接BI、連接PD、連接BO、連接CO、連接BD、連接CD、連接PB、連接PC,
∵DO⊥BC,
∴BD=CD,∠BPD=∠CPD,
∵PBI+∠BPI=∠BID,∠DBC+∠CBI=∠IBD,∠BPD=∠BCD,
∴∠DBI=∠BID,
∴ID=BD,
∵∠BAC=60°,BC=2,
∴∠BOD=60°,△BDO是等邊三角形,
∴BO==2,
∴BD=BO=ID=2,
∴動(dòng)點(diǎn)I到定點(diǎn)D的距離為2,即點(diǎn)I的軌跡是以點(diǎn)D為圓心,2為半徑的弧CIB(不含點(diǎn)C、B),
弧CIB的長(zhǎng)為,
則m的取值范圍是0<m<.
故答案為:0<m<.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市部分學(xué)生參加了全國(guó)初中數(shù)學(xué)競(jìng)賽決賽,并取得優(yōu)異成績(jī).已知競(jìng)賽成績(jī)分?jǐn)?shù)都是整數(shù),試題滿分為140分,參賽學(xué)生的成績(jī)分?jǐn)?shù)分布情況如下:
分?jǐn)?shù)段 | 0-19 | 20-39 | 40-59 | 60-79 | 80-99 | 100-119 | 120-140 |
人數(shù) | 0 | 37 | 68 | 95 | 56 | 32 | 12 |
請(qǐng)根據(jù)以上信息解答下列問題:
(1)全市共有多少人參加本次數(shù)學(xué)競(jìng)賽決賽?最低分和最高分在什么分?jǐn)?shù)范圍?
(2)經(jīng)競(jìng)賽組委會(huì)評(píng)定,競(jìng)賽成績(jī)?cè)?/span>60分以上(含60分)的考生均可獲得不同等級(jí)的獎(jiǎng)勵(lì),求我市參加本次競(jìng)賽決賽考生的獲獎(jiǎng)比例;
(3)決賽成績(jī)分?jǐn)?shù)的中位數(shù)落在哪個(gè)分?jǐn)?shù)段內(nèi)?
(4)上表還提供了其他信息,例如:“沒獲獎(jiǎng)的人數(shù)為105人”等等.請(qǐng)你再寫出兩條此表提供的信息.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊斜邊長(zhǎng)相等的等腰直角三角板按如圖①擺放,斜邊AB分別交CD,CE于M,N點(diǎn).
(1)如果把圖①中的△BCN繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到△ACF,連接FM,如圖②,求證:△CMF≌△CMN;
(2)將△CED繞點(diǎn)C旋轉(zhuǎn),則:
①當(dāng)點(diǎn)M,N在AB上(不與點(diǎn)A,B重合)時(shí),線段AM,MN,NB之間有一個(gè)不變的關(guān)系式,請(qǐng)你寫出這個(gè)關(guān)系式,并說明理由;
②當(dāng)點(diǎn)M在AB上,點(diǎn)N在AB的延長(zhǎng)線上(如圖③)時(shí),①中的關(guān)系式是否仍然成立?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:P(4,1)為平面直角坐標(biāo)系中的一點(diǎn),點(diǎn)A(a,0),點(diǎn)B(0,a)(其中a>0)分別是坐標(biāo)軸上的動(dòng)點(diǎn),若△PAB的面積為3,試求點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為12cm的等邊三角形ABC中,點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以每秒鐘1cm的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以每秒鐘2cm的速度移動(dòng).若P、Q分別從A、B同時(shí)出發(fā),其中任意一點(diǎn)到達(dá)目的地后,兩點(diǎn)同時(shí)停止運(yùn)動(dòng),求:
(1)經(jīng)過6秒后,BP= cm,BQ= cm;
(2)經(jīng)過幾秒后,△BPQ是直角三角形?
(3)經(jīng)過幾秒△BPQ的面積等于cm2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,AC和BD相交于點(diǎn)E,且DC2=CECA.
(1)求證:BC=CD;
(2)分別延長(zhǎng)AB,DC交于點(diǎn)P,若PB=OB,CD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3,以點(diǎn)A為圓心,1為半徑作圓,E是⊙A上的任意一點(diǎn),將DE繞點(diǎn)D按逆時(shí)針旋轉(zhuǎn)90°,得到DF,連接AF,
(1)當(dāng)∠EAD=90°時(shí),AF=________________.
(2)在E的整個(gè)運(yùn)動(dòng)過程中,AF的最大值是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB為10cm,弦BC=8cm,∠ACB的平分線交⊙O于點(diǎn)D.連接AD,BD.求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師提出利用尺規(guī)作圖完成下面問題:
已知:求作:的內(nèi)切圓.
小明的作法如下:如圖2,
作,的平分線BE和CF,兩線相交于點(diǎn)O;
過點(diǎn)O作,垂足為點(diǎn)D;
點(diǎn)O為圓心,OD長(zhǎng)為半徑作所以,即為所求作的圓.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com