【題目】下列說法正確的是( )
A.點P(3,﹣5)到x軸的距離為﹣5
B.在平面直角坐標(biāo)系內(nèi),(﹣1,2)和(2,﹣1)表示同一個點
C.若x=0,則點P(x,y)在x軸上
D.在平面直角坐標(biāo)系中,有且只有一個點既在x軸上,又在y軸上
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中, ,點是直線上一點(不與重合),以為一邊在 的右側(cè)作,使,連接.
(1)如圖1,當(dāng)點在線段上,如果,則 度;
(2)設(shè), .
①如圖2,當(dāng)點在線段上移動,則之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當(dāng)點在直線上移動,則之間有怎樣的數(shù)量關(guān)系?請畫出圖形并直接寫出相應(yīng)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫出函數(shù)的圖象.
(1)函數(shù)的自變量x的取值范圍是________;
(2)列表(把表格補充完整)
x | …… | -2 | -1 | 0 | 1 | 2 | 3 | 4 | …… |
y |
(3)描點、連線
(4)結(jié)合圖象,寫出函數(shù)的一條性質(zhì)________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)場300名職工耕種51公頃土地,計劃種植水稻,棉花和蔬菜,已知種植農(nóng)作物每公頃所需的勞動力人數(shù)及投入的設(shè)備資金如下表:
農(nóng)作物品種 | 每公頃需勞動力 | 每公頃需投入資金 |
水稻 | 4人 | 1萬元 |
棉花 | 8人 | 1萬元 |
蔬菜 | 5人 | 2萬元 |
已知該農(nóng)場計劃在設(shè)備上投入67萬元,應(yīng)該怎樣安排三種農(nóng)作物的種植面積,才能使所有的職工都有工作,而且投入的資金正好夠用?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推進(jìn)我市校園體育運動的發(fā)展,2017年義烏市中小學(xué)運動會在雪峰中學(xué)成功舉辦.在此期間,某體育文化用品商店計劃一次性購進(jìn)籃球和排球共60個,其進(jìn)價與售價間的關(guān)系如下表:
籃球 | 排球 | |
進(jìn)價(元/個) | 80 | 50 |
售價(元/個) | 105 | 70 |
(1)商店用4200元購進(jìn)這批籃球和排球,求購進(jìn)籃球和排球各多少個?
(2)設(shè)商店所獲利潤為y(單位:元),購進(jìn)籃球的個數(shù)為x(單位:個),請寫出y與x之間的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(3)若要使商店的進(jìn)貨成本在4300元的限額內(nèi),且全部銷售完后所獲利潤不低于1400元,請你列舉出商店所有進(jìn)貨方案,并求出最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,延長AB至點D,使DB=AB,連接CD,以CD為直角邊作等腰直角三角形CDE,其中∠DCE=90°,連接BE.
(1)求證:△ACD≌△BCE;
(2) 若AC=3cm,求BE的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程.(其中m為實數(shù))
(1)若此方程的一個非零實數(shù)根為k,
① 當(dāng)k = m時,求m的值;
② 若記為y,求y與m的關(guān)系式;
(2)當(dāng)<m<2時,判斷此方程的實數(shù)根的個數(shù)并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一條筆直的公路上有A、B、C三地,C地位于A、B兩地之間,甲車從A地沿這條公路勻速駛向C地,乙車從B地沿這條公路勻速駛向A地,在甲車出發(fā)至甲車到達(dá)C地的過程中,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①甲車出發(fā)2h時,兩車相遇;②乙車出發(fā)1.5h時,兩車相距170km;③乙車出發(fā)h時,兩車相遇;④甲車到達(dá)C地時,兩車相距40km.其中正確的是______(填寫所有正確結(jié)論的序號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com