菱形的兩條對(duì)角線的長的比是2 : 3 ,面積是24cm2,則它的兩條對(duì)角線的長分別為__________;
4和_6cm
解:設(shè)菱形的兩條對(duì)角線的長分別為:2xcm,3xcm,
∵面積是24cm2,
×2x×3x=24,
解得:x=2,
∴它的兩條對(duì)角線的長分別為:4cm,6cm.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知平行四邊形ABCD,

(1)試用三種方法將它分成面積相等的兩部分。(保留作圖痕跡,不寫作法)
(2)由上述方法,你能得到什么一般性的結(jié)論?
(3)解決問題:有兄弟倆分家時(shí),原來共同承包的一塊平行四邊形田地ABCD,現(xiàn)要進(jìn)行平均劃分,由于在這塊地里有一口井P,如圖所示,為了兄弟倆都能方便使用這口井,兄弟倆在劃分時(shí)犯難了,聰明的你能幫他們解決這個(gè)問題嗎?(保留作圖痕跡,不寫作法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形中,邊上一點(diǎn),過點(diǎn),與延長線交于點(diǎn).連接,與邊交于點(diǎn),與對(duì)角線交于點(diǎn)

(1)若,求的長;
(2)若,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖等腰梯形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,那么圖中的全等三角形最多有        對(duì)。
A.1對(duì)B.2對(duì)C.3對(duì)D.4對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

活動(dòng)課上,小華從點(diǎn)O出發(fā),每前進(jìn)1米,就向右轉(zhuǎn)體a°(0<a<180),照這樣走下去,如果他恰好能回到O點(diǎn),且所走過的路程最短,則a的值等于_      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

梯形ABCD中,AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC為斜邊向形外作等腰直角三角形,其面積分別是S1、S2、S3 ,且S1 +S3 =9S2,則CD=(   )

A.2.5AB        B.3AB  
C.3.5AB           D.4AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),在梯形ABCD中,AD∥BC,且AD=4cm,AB=6cm,BC=12cm,DC=10cm.若動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒4cm的速度沿線段AD、DC向C點(diǎn)運(yùn)動(dòng);動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)以每秒5cm的速度沿CB向B點(diǎn)運(yùn)動(dòng). 當(dāng)Q點(diǎn)到達(dá)B點(diǎn)時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng). 設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒.
(1)求梯形ABCD的面積.
(2)當(dāng)t為何值時(shí),四邊形PQCD成為平行四邊形?
(3)是否存在t,使得P點(diǎn)在線段DC上,且PQ⊥DC(如圖(2)所示)?若存在,求出此時(shí)t的值,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在梯形ABCD中,AD//BC,對(duì)角線AC⊥BD,且AC=5cm,BD=12cm,則梯形中位線的長等于______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列條件:①AB=CD,AB∥CD;②∠A=∠C,∠B=∠D;③AB=AD,BC=CD; ④AB=CD,AD=BC.其中能判定四邊形ABCD為平行四邊形的有 (       )
A.1個(gè)  B.2個(gè)  C.3個(gè)   D.4個(gè)

查看答案和解析>>

同步練習(xí)冊答案