【題目】如圖,ABC的內(nèi)切圓與三邊分別相切于點(diǎn)D、E、F,則下列等式:

①∠EDFB;

2EDFAC;

2AFEDEDF;

④∠AEDBFECDF=180°,其中成立的個(gè)數(shù)是( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】B

【解析】

根據(jù)內(nèi)接圓與圓的內(nèi)接三角形的性質(zhì)進(jìn)行判斷.

由題意可知AD=AE,CD=CF,∴∠ADE=∠AED,∠CDF=∠CFD,∴∠EDF=180°-∠ADE-∠CDF=180°-(180°-∠A)-(180°-∠C)=∠A+∠C,∴2∠EDF=∠A+∠C,②成立;易得∠AED=(180°-∠A),∠BFE=(180°-∠B),∠CDF=(180°-∠C),∴∠AED+∠BFE+∠CDF=[180°×3-(∠A+∠B+∠C)]=180°,∴④成立;若∠EDF=∠B,則∠BEF=∠B,∴=∠B,∴∠B=60°,與題中條件不不符,①不成立;若2A=FED+EDF,2∠A=∠FDC+∠BEF,∴2∠A=,∴2∠A=,解得∠A=60°,與題中條件不符,故③不成立.故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(﹣2,0),B(4,0),C(0,3),以D為頂點(diǎn)的拋物線y=ax2+bx+cA,B,C三點(diǎn).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)設(shè)拋物線的對(duì)稱軸DE交線段BC于點(diǎn)E,P為第一象限內(nèi)拋物線上一點(diǎn),過點(diǎn)Px軸的垂線,交線段BC于點(diǎn)F,若四邊形DEFP為平行四邊形,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDABCD的對(duì)角線,點(diǎn)EF分別在BD上,連接AE、CF

1)請(qǐng)你添加一個(gè)條件,使△AED≌△CFB,并給予證明;

2)在你添加的條件后,不再添加其它條件,寫出圖中所有全等的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c a≠0)的圖象如圖所示,則①abc>0,②b2-4ac>0,③2a+b>0,④a+b+c<0,這四個(gè)式子中正確的個(gè)數(shù)有(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)D是等腰直角三角形ABC斜邊BC所在直線上一點(diǎn)(不與點(diǎn)B重合),連接AD.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),將線段AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到線段AE,連接CE.求證:BD=CE,BDCE;

(2)如圖2,當(dāng)點(diǎn)D在線段BC延長(zhǎng)線上時(shí),將線段AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到線段AE,連接CE.請(qǐng)畫出圖形。上述結(jié)論是否仍然成立,并說明理由;

(3)根據(jù)圖2,請(qǐng)直接寫出AD、BD、CD三條線段之間的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,有一個(gè)正三角形,其中,的坐標(biāo)分別為.若在無滑動(dòng)的情況下,將這個(gè)正三角形沿著軸向右滾動(dòng),則在滾動(dòng)過程中,這個(gè)正三角形的頂點(diǎn),中,會(huì)過點(diǎn)的是點(diǎn)__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊中,點(diǎn)分別是上的動(dòng)點(diǎn),且,于點(diǎn)

1)如圖1,求證;

2)點(diǎn)是邊的中點(diǎn),連接,

①如圖2,若點(diǎn),三點(diǎn)共線,則的數(shù)量關(guān)系是 ;

②若點(diǎn),,三點(diǎn)不共線,如圖3,問①中的結(jié)論還成立嗎?若成立,請(qǐng)給出證明,若不成立,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx經(jīng)過OAB的三個(gè)頂點(diǎn),其中點(diǎn)A(1,),點(diǎn)B(3,﹣),O為坐標(biāo)原點(diǎn).

(1)求這條拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式;

(2)若P(4,m),Qt,n)為該拋物線上的兩點(diǎn),且nm,求t的取值范圍;

(3)若C為線段AB上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)A,點(diǎn)B到直線OC的距離之和最大時(shí),求∠BOC的大小及點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,4),B(﹣4,1),C(0,1).

(1)畫出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);

(2)畫出以C1為旋轉(zhuǎn)中心,將△A1B1C1逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;

(3)尺規(guī)作圖:連接A1A2,在C1A2邊上求作一點(diǎn)P,使得點(diǎn)PA1A2的距離等于PC1的長(zhǎng)(保留作圖痕跡,不寫作法);

(4)請(qǐng)直接寫出∠C1A1P的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案