【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(8,8),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長線交線段OA于點(diǎn)H,連CH、CG.
(1)求證:△CBG≌△CDG;
(2)求∠HCG的度數(shù);判斷線段HG、OH、BG的數(shù)量關(guān)系,并說明理由;
(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過程中,四邊形AEBD能否為矩形?如果能,請(qǐng)求出點(diǎn)H的坐標(biāo);如果不能,請(qǐng)說明理由.
【答案】(1)見解析;(2)HG=HD+DG=HO+BG;(3)H點(diǎn)的坐標(biāo)為(2,0).
【解析】
試題分析:(1)求證全等,觀察兩個(gè)三角形,發(fā)現(xiàn)都有直角,而CG為公共邊,進(jìn)而再鎖定一條直角邊相等即可,因?yàn)槠錇檎叫涡D(zhuǎn)得到,所以邊都相等,即結(jié)論可證.
(2)根據(jù)(1)中三角形全等可以得到對(duì)應(yīng)邊、角相等,即BG=DG,∠DCG=∠BCG.同第一問的思路容易發(fā)現(xiàn)△CDH≌△COH,也有對(duì)應(yīng)邊、角相等,即OH=DH,∠OCH=∠DCH.于是∠GCH為四角的和,四角恰好組成直角,所以∠GCH=90°,且容易得到OH+BG=HG.
(3)四邊形AEBD若為矩形,則需先為平行四邊形,即要對(duì)角線互相平分,合適的點(diǎn)只有G為AB中點(diǎn)的時(shí)候.由上幾問知DG=BG,所以此時(shí)同時(shí)滿足DG=AG=EG=BG,即四邊形AEBD為矩形.求H點(diǎn)的坐標(biāo),可以設(shè)其為(x,0),則OH=x,AH=6﹣x.而BG為AB的一半,所以DG=BG=AG=3.又由(2),HG=x+3,所以Rt△HGA中,三邊都可以用含x的表達(dá)式表達(dá),那么根據(jù)勾股定理可列方程,進(jìn)而求出x,推得H坐標(biāo).
(1)證明:∵正方形ABCO繞點(diǎn)C旋轉(zhuǎn)得到正方形CDEF,
∴CD=CB,∠CDG=∠CBG=90°.
在Rt△CDG和Rt△CBG中,
,
∴△CDG≌△CBG(HL);
(2)解:∵△CDG≌△CBG,
∴∠DCG=∠BCG,DG=BG.
在Rt△CHO和Rt△CHD中,
∵,
∴△CHO≌△CHD(HL),
∴∠OCH=∠DCH,OH=DH,
∴∠HCG=∠HCD+∠GCD=∠OCD+∠DCB=∠OCB=45°,
∴HG=HD+DG=HO+BG;
(3)解:四邊形AEBD可為矩形.
如圖,連接BD、DA、AE、EB,四邊形AEBD若為矩形,則需先為平行四邊形,即要對(duì)角線互相平分,合適的點(diǎn)只有G為AB中點(diǎn)的時(shí)候.
∵DG=BG,
∴DG=AG=EG=BG,即平行四邊形AEBD對(duì)角線相等,則其為矩形,
∴當(dāng)G點(diǎn)為AB中點(diǎn)時(shí),四邊形AEBD為矩形.
∵四邊形DAEB為矩形,
∴AG=EG=BG=DG.
∵AB=6,
∴AG=BG=3.
設(shè)H點(diǎn)的坐標(biāo)為(x,0),則HO=x
∵OH=DH,BG=DG,
∴HD=x,DG=3.
在Rt△HGA中,
∵HG=x+3,GA=3,HA=6﹣x,
∴(x+3)2=32+(6﹣x)2,解得x=2.
∴H點(diǎn)的坐標(biāo)為(2,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O按每秒10°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周.在旋轉(zhuǎn)的過程中,假如第t秒時(shí),OA、OC、ON三條射線構(gòu)成相等的角,求此時(shí)t的值為多少?
(2)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)圖2,使ON在∠AOC的內(nèi)部,請(qǐng)?zhí)骄浚?/span>∠AOM與∠NOC之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC,∠ABC=90°,以直角邊AB為直徑作⊙O,交斜邊AC于點(diǎn)D,連接BD.
(1)若AD=3,BD=4,求邊BC的長;
(2)取BC的中點(diǎn)E,連接ED,試證明ED與⊙O相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列因式分解正確的是( )
A. x2+2x+1=x(x+2)+1 B. (x2-4)x=x3-4x C. ax+bx=(a+b)x D. m2-2mn+n2=(m+n)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第二象限,以A為頂點(diǎn)的拋物線經(jīng)過原點(diǎn),與x軸負(fù)半軸交于點(diǎn)B,對(duì)稱軸為直線x=﹣1,點(diǎn)C在拋物線上,且位于點(diǎn)A、B之間(C不與A、B重合).若△ABC的周長為m,四邊形AOBC的周長為 (用含m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,MN過點(diǎn)O且與邊AD、BC分別交于點(diǎn)M和點(diǎn)N.
(1)請(qǐng)你判斷OM與ON的數(shù)量關(guān)系,并說明理由;
(2)過點(diǎn)D作DE∥AC交BC的延長線于E,當(dāng)AB=5,AC=6時(shí),求△BDE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于任意有理數(shù)a,b,現(xiàn)用“☆”定義一種運(yùn)算:a☆b=a2﹣b2,根據(jù)這個(gè)定義,代數(shù)式(x+y)☆y可以化簡為( )
A. xy+y2 B. xy﹣y2 C. x2+2xy D. x2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小李從西安通過某快遞公司給在南昌的外婆寄一盒櫻桃,快遞時(shí),他了解到這個(gè)公司除收取每次6元的包裝費(fèi)外,櫻桃不超過1kg收費(fèi)22元,超過1kg,則超出部分按每千克10元加收費(fèi)用.設(shè)該公司從西安到南昌快遞櫻桃的費(fèi)用為y(元),所寄櫻桃為x(kg).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)已知小李給外婆快寄了2.5kg櫻桃,請(qǐng)你求出這次快寄的費(fèi)用是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com