【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.

(1)求證:BD=CE;

(2)設BDCE相交于點O,點M,N分別為線段BOCO的中點,當ABC的重心到頂點A的距離與底邊長相等時,判斷四邊形DEMN的形狀,無需說明理由.

【答案】(1)證明見解析;(2)四邊形DEMN是正方形,證明見解析.

【解析】分析:(1)根據(jù)已知條件得到AD=AE,根據(jù)全等三角形的性質即可得到結論;
(2)根據(jù)三角形中位線的性質得到EDBC,ED=BC,MNBC,MN=BC,等量代換得到EDMN,ED=MN,推出四邊形EDNM是平行四邊形,由(1)知BD=CE,求得DM=EN,得到四邊形EDNM是矩形,根據(jù)全等三角形的性質得到OB=OC,由三角形的重心的性質得到OBC的距離=BC,根據(jù)直角三角形的判定得到BDCE,于是得到結論.

詳解

(1)解:由題意得,AB=AC,

BD,CE分別是兩腰上的中線,

AD=AC,AE=AB,

AD=AE,

ABDACE

,

∴△ABD≌△ACE(ASA).

BD=CE;

(2)四邊形DEMN是正方形,

證明:∵E、D分別是AB、AC的中點,

AE=AB,AD=AC,EDABC的中位線,

EDBC,ED=BC,

∵點M、N分別為線段BOCO中點,

OM=BM,ON=CN,MNOBC的中位線,

MNBC,MN=BC,

EDMN,ED=MN,

∴四邊形EDNM是平行四邊形,

由(1)知BD=CE,

又∵OE=ON,OD=OM,OM=BM,ON=CN,

DM=EN,

∴四邊形EDNM是矩形,

BDCCEB中,,

∴△BDC≌△CEB,

∴∠BCE=CBD,

OB=OC,

∵△ABC的重心到頂點A的距離與底邊長相等,

OBC的距離=BC,

BDCE,

∴四邊形DEMN是正方形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠BAC60°,∠C70°,求∠DAE、∠BOA的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內離杯底4cm的點C

處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中, ABC 三個頂點的坐標分別為 A(1,1) , B(4, 2) ,C (5, 3) .

1)在圖中畫出 ABC 關于 y 軸的對稱 圖形 A1B1C1 ;(要求:畫出三角形,標出相應頂點的 字母,不寫結論)

2)分別寫出A1B1C1 三個頂點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,同底數(shù)冪的乘法法則為:am·anamn(其中a≠0,mn為正整數(shù)),類似地我們規(guī)定關于任意正整數(shù)m,n的一種新運算:h(mn)h(m)·h(n),請根據(jù)這種新運算填空:

(1)h(1),則h(2)________

(2)h(1)k(k≠0),則h(n)·h(2017)________(用含nk的代數(shù)式表示,其中n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學將組織七年級學生春游一天,由王老師和甲、乙兩同學到客車租賃公司洽談租車事宜

1兩同學向公司經理了解租車的價格,公司經理對他們說公司有45座和60座兩種型號的客車可供租用60座的客車每輛每天的租金比45座的貴100元王老師說我們學校八年級昨天在這個公司租了5輛45座和2輛60座的客車,一天的租金為1600元,你們能知道45座和60座的客車每輛每天的租金各是多少元嗎甲、乙兩同學想了一下都說知道了價格

聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?

2公司經理問你們準備怎樣租車,甲同學說我的方案是只租用45座的客車可是會有一輛客車空出30個座位乙同學說我的方案只租用60座客車,正好坐滿且比甲同學的方案少用兩輛客車王老師在旁聽了他們的談話說從經濟角度考慮,還有別的方案嗎?如果是你,你該如何設計租車方案并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=,AK=,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,ABAC的垂直平分線分別交BCD、E,角∠DAE=20°,則∠BAC=___.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鐵嶺“荷花節(jié)”舉辦了為期15天的“荷花美食”廚藝秀.小張購進一批食材制作特色美食,每盒售價為50元,由于食材需要冷藏保存,導致成本逐日增加,第x天(1≤x≤15且x為整數(shù))時每盒成本為p元,已知p與x之間滿足一次函數(shù)關系;第3天時,每盒成本為21元;第7天時,每盒成本為25元,每天的銷售量為y盒,y與x之間的關系如下表所示:

第x天

1≤x≤6

6<x≤15

每天的銷售量y/盒

10

x+6

(1)求p與x的函數(shù)關系式;

(2)若每天的銷售利潤為w元,求w與x的函數(shù)關系式,并求出第幾天時當天的銷售利潤最大,最大銷售利潤是多少元?

(3)在“荷花美食”廚藝秀期間,共有多少天小張每天的銷售利潤不低于325元?請直接寫出結果.

查看答案和解析>>

同步練習冊答案