【題目】如圖,在平面直角坐標(biāo)系中, ABC 三個(gè)頂點(diǎn)的坐標(biāo)分別為 A(1,1) , B(4, 2) ,C (5, 3) .

1)在圖中畫(huà)出 ABC 關(guān)于 y 軸的對(duì)稱(chēng) 圖形 A1B1C1 ;(要求:畫(huà)出三角形,標(biāo)出相應(yīng)頂點(diǎn)的 字母,不寫(xiě)結(jié)論)

2)分別寫(xiě)出A1B1C1 三個(gè)頂點(diǎn)的坐標(biāo).

【答案】解:(1)見(jiàn)解析;(2A1-1,1),B1-4-2),C1-53).

【解析】

1)分別作出點(diǎn)A、BC關(guān)于y軸的對(duì)稱(chēng)的點(diǎn),然后順次連接;
2)根據(jù)網(wǎng)格結(jié)果寫(xiě)出三個(gè)頂點(diǎn)的坐標(biāo).

解:(1)所作圖形如圖所示:
;

2A1-11),B1-4-2),C1-5,3).
故答案為:A1-11),B1-4,-2),C1-5,3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用“※”定義一種新運(yùn)算:對(duì)于任意有理數(shù)ab,規(guī)定abab2+2ab+a

如:121×22+2×1×2+19

1)(﹣2)※3  ;

2)若316,求a的值;

3)若2xm,(x)※3n(其中x為有理數(shù)),試比較mn的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知直線與坐標(biāo)軸交于兩點(diǎn),與直線交于點(diǎn),點(diǎn)的橫坐標(biāo)是縱坐標(biāo)的.

(1)的值.

(2)為線段上一點(diǎn),軸于點(diǎn),交于點(diǎn),,求點(diǎn)坐標(biāo).

(3)如圖2,點(diǎn)右側(cè)軸上的一動(dòng)點(diǎn),以為直角頂點(diǎn),為腰在第一象限內(nèi)作等腰直角,連接并延長(zhǎng)交軸于點(diǎn),當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),點(diǎn)的位置是否發(fā)生變化?若不變,請(qǐng)求出它的坐標(biāo);如果變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課堂上李老師給出了一道整式求值的題目,李老師把要求的整式(7a3-6a3b+3a2b--3a3-6a3b+3a2b+10a3-3)寫(xiě)完后,讓王泓同學(xué)順便給出一組的值,老師自己說(shuō)答案,當(dāng)王泓說(shuō)完:后,李老師不假思索,立刻就說(shuō)出答案:“3”。同學(xué)們覺(jué)得不可思議,李老師用堅(jiān)定的口吻說(shuō):這個(gè)答案準(zhǔn)確無(wú)誤。聰明的同學(xué)們,你能說(shuō)出其中的道理嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是放在地面上的一個(gè)長(zhǎng)方體盒子,其中,在線段的三等分點(diǎn)E=3)處有一只螞蟻,中點(diǎn)處有一米粒,則螞蟻沿長(zhǎng)方體表面爬到米粒處的最短距離為( )

A.10

B.

C.5+

D.6+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校要在一塊三角形空地上種植花草,如圖所示,AC13 米、AB14 米、BC15 米, 若線段 CD 是一條引水渠,且點(diǎn) D 在邊 AB 上.已知水渠的造價(jià)每米 150 元.問(wèn):點(diǎn) D 與點(diǎn) C 距離多遠(yuǎn)時(shí),水渠的造價(jià)最低?最低造價(jià)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰三角形ABC中,BD,CE分別是兩腰上的中線.

(1)求證:BD=CE;

(2)設(shè)BDCE相交于點(diǎn)O,點(diǎn)M,N分別為線段BOCO的中點(diǎn),當(dāng)ABC的重心到頂點(diǎn)A的距離與底邊長(zhǎng)相等時(shí),判斷四邊形DEMN的形狀,無(wú)需說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD中,∠A=∠C90°,ABBC,∠ABC120°,∠MBN60°,∠MBNB點(diǎn)旋轉(zhuǎn),它的兩邊分別交AD,DC(或它們的延長(zhǎng)線)于E,F

當(dāng)∠MBNB點(diǎn)旋轉(zhuǎn)到AECF時(shí)(如圖1),易證AE+CFEF;

當(dāng)∠MBNB點(diǎn)旋轉(zhuǎn)到AECF時(shí),在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,線段AE,CF,EF又有怎樣的數(shù)量關(guān)系?請(qǐng)寫(xiě)出你的猜想,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線ABCD,直線EFAB,CD分別相交于點(diǎn)E,F

1)如圖1,若∠1=60°,求∠2=__________;∠3=__________

2)若點(diǎn)P是平面內(nèi)的一個(gè)動(dòng)點(diǎn),連結(jié)PE,PF,探索∠EPF,∠PEB,∠PFD三個(gè)角之間的關(guān)系.

①當(dāng)點(diǎn)P在圖2的位置時(shí),可得∠EPF=PEB+PFD 理由如下:

如圖2,過(guò)點(diǎn)PMNAB,則∠EPM=PEB__________

ABCD(已知) MNAB(作圖)

MNCD__________

∴∠MPF=PFD __________

__________+__________=PEB+PFD(等式的性質(zhì))

即:∠EPF=PEB+PFD.請(qǐng)補(bǔ)充完整說(shuō)理過(guò)程(填寫(xiě)理由或數(shù)學(xué)式)

②當(dāng)點(diǎn)P在圖3的位置時(shí),此時(shí)∠EPF=80°,∠PEB=156°,則∠PFD=__________;

③當(dāng)點(diǎn)P在圖4的位置時(shí),寫(xiě)出∠EPF,∠PEB,∠PFD三個(gè)角之間的關(guān)系并證明(每一步必須注明理由).

查看答案和解析>>

同步練習(xí)冊(cè)答案