如圖,一次函數(shù)y=-2x+t(t>0)的圖象與x軸,y軸分別交于點(diǎn)C,D.
(1)求點(diǎn)C,點(diǎn)D的坐標(biāo);
(2)已知點(diǎn)P是二次函數(shù)y=-x2+3x圖象在y軸右側(cè)部分上的一個(gè)動(dòng)點(diǎn),若以點(diǎn)C,點(diǎn)D為直角頂點(diǎn)的△PCD與△OCD相似.求t的值及對(duì)應(yīng)的點(diǎn)P的坐標(biāo).
(1)對(duì)于一次函數(shù)y=-2x+t,
令y=0,求出x=
t
2
,令x=0,求出y=t,
∴C坐標(biāo)為(
t
2
,0),D坐標(biāo)為(0,t);
(2)由(1)得:OD=t,OC=
t
2
,
在Rt△OCD中,根據(jù)勾股定理得:CD=
OD2+OC2
=
5
t
2
,
以D為直角頂點(diǎn)的△PCD與△OCD相似,此時(shí)∠CDP=90°,
過P作PM⊥y軸,PN⊥x軸,如圖中紅線所示:

若PD:DC=OC:OD=1:2,則PD=
5
t
4
,
設(shè)P(x,-x2+3x),
∴PM=ON=x,PN=OM=-x2+3x,MD=-x2+3x-t,
在Rt△PMD中,根據(jù)勾股定理得:PD2=PM2+MD2
∴(
5
t
4
2=x2+(-x2+3x-t)2,①
又CN=ON-OC=x-
t
2
,
∴在Rt△PDC與Rt△PCN中,利用勾股定理得:PC2=PD2+CD2=PN2+CN2,
∴(
5
t
4
2+(
5
t
2
2=(-x2+3x)2+(x-
t
2
2,②
聯(lián)立①②解得:x=
1
2
,t=1,
∴此時(shí)P坐標(biāo)為(
1
2
,
5
4
);
若DC:PD=OC:OD=1:2時(shí),如圖所示,同理可以求得t=1,P(2,2),
若以C為直角頂點(diǎn)時(shí),△PCD與△OCD相似,此時(shí)∠DCP=90°時(shí),同理可得t=
26
25
,P(
13
5
,
26
25
),
綜上,當(dāng)t=1時(shí),對(duì)應(yīng)的P坐標(biāo)為(
1
2
,
5
4
)或(2,2)或P(
13
5
,
26
25
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2-x+a與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,其頂點(diǎn)在直線y=-2x上.
(1)求a的值;
(2)求A,B的坐標(biāo);
(3)以AC,CB為一組鄰邊作?ACBD,則點(diǎn)D關(guān)于x軸的對(duì)稱點(diǎn)D′是否在該拋物線上?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一張矩形紙片OABC放在平面直角坐標(biāo)系內(nèi),O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.
(1)如圖,將紙片沿CE對(duì)折,使點(diǎn)B落在x軸上的點(diǎn)D處,求D點(diǎn)的坐標(biāo);
(2)在(1)中,設(shè)BD與CE的交點(diǎn)為P,如果點(diǎn)B、P在拋物線y=x2+bx+c上,求b、c的值;
(3)如果將矩形紙片沿某直線l對(duì)折,使點(diǎn)B落在坐標(biāo)軸上的點(diǎn)F處,且BF與l的交點(diǎn)Q恰好落在(2)的拋物線上.除了上述的點(diǎn)D外,這樣的點(diǎn)F是否存在?如果存在,求出點(diǎn)F的坐標(biāo),如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系中,⊙A的半徑為4,A的坐標(biāo)為(2,0),⊙A與x軸交于E,F(xiàn)兩點(diǎn),與y軸交于C、D兩點(diǎn),過C點(diǎn)作⊙A的切線BC交x軸于B
(1)求直線BC的解析式;
(2)若拋物線y=ax2+bx+c的頂點(diǎn)在直線BC上,與x軸的交點(diǎn)恰為⊙A與x軸的交點(diǎn),求拋物線的解析式;
(3)問C點(diǎn)是否在所求的拋物線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,拋物線與x軸交于點(diǎn)(-1,0)和(3,0),與y軸交于點(diǎn)(0,-3)則此拋物線對(duì)此函數(shù)的表達(dá)式為(  )
A.y=x2+2x+3B.y=x2-2x-3C.y=x2-2x+3D.y=x2+2x-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

Rt△ABC的三個(gè)頂點(diǎn)A,B,C均在拋物線y=x2上,并且斜邊AB平行于x軸.若斜邊上的高為h,則( 。
A.h<1B.h=1C.1<h<2D.h>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于50%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)的關(guān)系符合一次函數(shù)y=-x+140.
(1)直接寫出銷售單價(jià)x的取值范圍.
(2)若銷售該服裝獲得利潤為W元,試寫出利潤W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)為多少元時(shí),可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,鉛球的出手點(diǎn)C距地面1米,出手后的運(yùn)動(dòng)路線是拋物線,出手后4秒鐘達(dá)到最大高度3米,則鉛球運(yùn)行路線的解析式為( 。
A.h=-
3
16
t2
B.y=-
3
16
t2+t
C.h=-
1
8
t2+t+1
D.h=-
1
3
t2+2t+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知矩形OACB的邊OA,OB分別在x軸上和y軸上,線段OA,OB的長分別是一元二次方程x2-18x+72=0的兩個(gè)根,且OA>OB;點(diǎn)P從點(diǎn)O開始沿OA邊勻速移動(dòng),點(diǎn)M從點(diǎn)B開始沿BO邊勻速移動(dòng).如果點(diǎn)P,點(diǎn)M同時(shí)出發(fā),它們移動(dòng)的速度相同,設(shè)OP=x(0≤x≤6),設(shè)△POM的面積為y.
(1)求y與x的函數(shù)關(guān)系式;
(2)連接矩形的對(duì)角線AB,當(dāng)x為何值時(shí),以P,O,M為頂點(diǎn)的三角形與△AOB相似;
(3)當(dāng)△POM的面積最大時(shí),將△POM沿PM所在直線翻折后得到△PDM,試判斷D點(diǎn)是否在矩形的對(duì)角線AB上,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案