【題目】某市居民使用自來水按照如下標(biāo)準(zhǔn)收費(fèi):若每戶月用水不超過12m3,按a元/m3收費(fèi);若超過12m3,但不超過20m3,則超過的部分按1.5a元/m3收費(fèi);若超過20m3超過的部分按2a元/m3收費(fèi)
(1)把相應(yīng)的收費(fèi)金額填在表格里;
(2)已知壯壯家上個月用水量14m3,交水費(fèi)45元,求a的值;
(3)在(2)的條件下,壯壯媽媽開了一個面館,工商部門規(guī)定:商業(yè)用水的價格按照居民用水價格提高50%收取,壯壯媽媽的面館預(yù)計本月用水量28m3,求壯壯媽媽的面館本月的水費(fèi).
【答案】(1)見解析;(2)3;(3)180元
【解析】
(1)根據(jù)總價=單價×數(shù)量結(jié)合收費(fèi)標(biāo)準(zhǔn),可求出當(dāng)用水量為26m3時的收費(fèi)金額;
(2)根據(jù)壯壯家上個月用水量14m3且交水費(fèi)45元,即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;
(3)根據(jù)總價=單價×數(shù)量結(jié)合收費(fèi)標(biāo)準(zhǔn)及商業(yè)用水的價格按照居民用水價格提高50%收取,即可求出壯壯媽媽的面館本月的水費(fèi).
解:(1)12a+(20-12)×1.5a+(26-20)×2a=36a(元).
故答案為:36a;
(2)依題意,得:12a+(14-12)×1.5a=45,
解得:a=3;
(3)[12×3+(20-12)×1.5×3+(28-20)×2×3]×(1+50%)=180(元).
答:壯壯媽媽的面館本月的水費(fèi)為180元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算及判斷正確的是( )
A. ﹣5×÷(﹣)×5=1
B. 方程(x2+x﹣1)x+3=1有四個整數(shù)解
C. 若a×5673=103,a÷103=b,則a×b=
D. 有序數(shù)對(m2+1,m)在平面直角坐標(biāo)系中對應(yīng)的點(diǎn)一定在第一象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在運(yùn)動會前夕,育紅中學(xué)都會購買籃球、足球作為獎品.若購買10個籃球和15個足球共花費(fèi)3000元,且購買一個籃球比購買一個足球多花50元.
(1)求購買一個籃球,一個足球各需多少元?
(2)今年學(xué)校計劃購買這種籃球和足球共10個,恰逢商場在搞促銷活動,籃球打九折,足球打八五折,若此次購買兩種球的總費(fèi)用不超過1050元,則最多可購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°.
(1)如圖1,當(dāng)點(diǎn)A、C、D在同一條直線上時,AE與BD的數(shù)量關(guān)系是 ;
位置關(guān)系是 ;
(2)如圖2,當(dāng)點(diǎn)A、C、D不在同一條直線上時,(1)中的結(jié)論還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一動點(diǎn)(不與點(diǎn)A,E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ.以下五個結(jié)論:
①AD=BE;
②PQ∥AE;
③EQ=DP;
④∠AOB=60°;
⑤當(dāng)C為AE中點(diǎn)時,S△BPQ:S△CDE=1:3.其中恒成立的結(jié)論有( 。
A.①②④B.①②③④C.①②③⑤D.①②④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
如圖①,點(diǎn)C將線段AB分成兩部分,若,則點(diǎn)C為線段AB的黃金分割點(diǎn).
某研究學(xué)習(xí)小組,由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,從而給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1,S2,如果,那么稱直線l為該圖形的黃金分割線.
問題解決:
如圖②,在△ABC中,已知D是AB的黃金分割點(diǎn).
(1)研究小組猜想:直線CD是△ABC的黃金分割線,你認(rèn)為對嗎?為什么?
(2)請你說明:三角形的中線是否也是該三角形的黃金分割線?
(3)研究小組探究發(fā)現(xiàn):過點(diǎn)C作直線交AB于點(diǎn)E,過點(diǎn)D作DF∥CE,交AC于點(diǎn)F,連接EF(如圖③),則直線EF也是△ABC的黃金分割線.請你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為 的正方形 的一邊 與直角邊分別是 和 的 的一邊 重合.正方形 以每秒 個單位長度的速度沿 向右勻速運(yùn)動,當(dāng)點(diǎn) 和點(diǎn) 重合時正方形停止運(yùn)動.設(shè)正方形的運(yùn)動時間為 秒,正方形 與 重疊部分面積為S,則S關(guān)于 的函數(shù)圖象為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
數(shù)軸上線段的長度可以用線段端點(diǎn)表示的數(shù)進(jìn)行減法運(yùn)算得到,例如圖,線段AB=1=0﹣(﹣1);線段 BC=2=2﹣0;線段 AC=3=2﹣(﹣1)問題
①數(shù)軸上點(diǎn)M、N代表的數(shù)分別為﹣9和1,則線段MN= ;
②數(shù)軸上點(diǎn)E、F代表的數(shù)分別為﹣6和﹣3,則線段EF= ;
③數(shù)軸上的兩個點(diǎn)之間的距離為5,其中一個點(diǎn)表示的數(shù)為2,則另一個點(diǎn)表示的數(shù)為m,求m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線AM⊥AN,AB平分∠MAN,過點(diǎn)B作BC⊥BA交AN于點(diǎn)C;動點(diǎn)E、D同時從A點(diǎn)出發(fā),其中動點(diǎn)E以2cm/s的速度沿射線AN方向運(yùn)動,動點(diǎn)D以1cm/s的速度運(yùn)動;已知AC=6cm,設(shè)動點(diǎn)D,E的運(yùn)動時間為t.
(1)當(dāng)點(diǎn)D在射線AM上運(yùn)動時滿足S△ADB:S△BEC=2:1,試求點(diǎn)D,E的運(yùn)動時間t的值;
(2)當(dāng)動點(diǎn)D在直線AM上運(yùn)動,E在射線AN運(yùn)動過程中,是否存在某個時間t,使得△ADB與△BEC全等?若存在,請求出時間t的值;若不存在,請說出理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com