【題目】如圖,已知在正方形ABCD中,對角線AC與BD相交于點(diǎn)O,OE∥AB交BC于點(diǎn)E.若AD=8cm,則OE的長為( )
A. 3cm B. 4cm C. 6cm D. 8cm
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班參加一次智力競賽,共a、b、c三題,每題或者得滿分或者得0分,其中題a滿分20分,題b、題c滿分均為25分.競賽結(jié)果,每個學(xué)生至少答對了一題,三題全答對的有1人,答對其中兩道題的有15人,答對題a的人數(shù)與答對題b的人數(shù)之和為29,答對題a的人數(shù)與答對題c的人數(shù)之和為25,答對題b的人數(shù)與答對題c的人數(shù)之和為20,在這個班的平均成績是__分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】菱形的邊長為,,、分別是、的中點(diǎn),、分別在、上,且.
求證:四邊形是平行四邊形;
當(dāng)四邊形是菱形時,求的長;
當(dāng)四邊形是矩形時,求此時點(diǎn)到點(diǎn)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=AN,BC=BM,則∠MCN=( )
A. 30°B. 45°C. 60°D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在熱氣球A上看到橫跨河流兩岸的大橋BC,并測得B,C兩點(diǎn)的俯角分別為45°,36°.已知大橋BC與地面在同一水平面上,其長度為100m.請求出熱氣球離地面的高度(結(jié)果保留小數(shù)點(diǎn)后一位).參考數(shù)據(jù):tan36°≈0.73.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AB邊上一點(diǎn),過點(diǎn)C作CF∥AB交ED的延長線于點(diǎn)F.
(1)求證:△BDE≌△CDF.
(2)當(dāng)AD⊥BC,AE=2,CF=4時,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形是由大小、形狀相同的“小等邊三角形”按照一定的規(guī)律組成,其中第1幅圖中有3個小等邊三角形,第2幅圖中有8個小邊三角形,第3幅圖中有15個小等邊三角形,依此類推,則第10幅圖中有( 。﹤小等邊三角形.
A.63B.80C.99D.120
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是直角三角形,,,以點(diǎn)為旋轉(zhuǎn)中心,將旋轉(zhuǎn)到的位置,且使經(jīng)過點(diǎn).
求的度數(shù),判斷的形狀;
求線段與線段的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)如圖1,在正方形ABCD中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠DCP的平分線上一點(diǎn).若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點(diǎn),則當(dāng)∠AMN=60°時,結(jié)論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD……X”,請你作出猜想:當(dāng)∠AMN= °時,結(jié)論AM=MN仍然成立.(直接寫出答案,不需要證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com