【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,2).延長(zhǎng)CB交x軸于點(diǎn)A1,作第1個(gè)正方形A1B1C1C;延長(zhǎng)C1B1交x軸于點(diǎn)A2,作第2個(gè)正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2016個(gè)正方形的面積是______.
【答案】5×()4030
【解析】解:如圖,∵四邊形ABCD是正方形,∴∠ABC=∠BAD=90°,AB=BC,
∴∠ABA1=90°,∠DAO+∠BAA1=180°﹣90°=90°,
∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠ADO=∠BAA1,
在△AOD和A1BA中
∴△AOD∽△A1BA,
∴,∴BC=2A1B.
∴A1C=BC,則A2C1=A1C,A3C2=A2C1,
即后一個(gè)正方形的邊長(zhǎng)是前一個(gè)正方形的邊長(zhǎng)的倍.
∴第2016個(gè)正方形的邊長(zhǎng)為BC.
∵A的坐標(biāo)為(1,0),D點(diǎn)坐標(biāo)為(0,2),∴BC=AD=.
∴第2011個(gè)正方形的面積為.
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD中,AD∥BC,AP平分∠DAB,BP平分∠ABC,它們的交點(diǎn)P在線段CD上,下面的結(jié)論:①AP⊥BP;②點(diǎn)P到直線AD,BC的距離相等;③PD=PC.其中正確的結(jié)論有( )
A. ①②③ B. ①② C. ① D. ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,有A、B兩動(dòng)點(diǎn)在線段MN上各自做不間斷往返勻速運(yùn)動(dòng)(即只要?jiǎng)狱c(diǎn)與線段MN的某一端點(diǎn)重合則立即轉(zhuǎn)身以同樣的速度向MN的另一端點(diǎn)運(yùn)動(dòng),與端點(diǎn)重合之前動(dòng)點(diǎn)運(yùn)動(dòng)方向、速度均不改變),已知A的速度為3米/秒,B的速度為2米/秒
(1)已知MN=100米,若B先從點(diǎn)M出發(fā),當(dāng)MB=5米時(shí)A從點(diǎn)M出發(fā),A出發(fā)后經(jīng)過(guò) 秒與B第一次重合;
(2)已知MN=100米,若A、B同時(shí)從點(diǎn)M出發(fā),經(jīng)過(guò) 秒A與B第一次重合;
(3)如圖2,若A、B同時(shí)從點(diǎn)M出發(fā),A與B第一次重合于點(diǎn)E,第二次重合于點(diǎn)F,且EF=20米,設(shè)MN=s米,列方程求s.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線OM⊥ON,垂足為O,三角板的直角頂點(diǎn)C落在∠MON的內(nèi)部,三角板的另兩條直角邊分別與ON、OM交于點(diǎn)D和點(diǎn)B.
(1)填空:∠OBC+∠ODC= ;
(2)如圖1:若DE平分∠ODC,BF平分∠CBM,求證:DE⊥BF:
(3)如圖2:若BF、DG分別平分∠OBC、∠ODC的外角,判斷BF與DG的位置關(guān)系,并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求下列各式中的x的值:
(1)8x3+125=0;
(2)(x-3)2-9=0.
【答案】(1)x=-;(2)x1=6或x2=0.
【解析】試題分析:(1)立方根定義解方程.(2)平方根定義解方程.
試題解析:(1)8x3+125=0,
x3=,
x=-.
(2)(x-3)2-9=0,
(x-3)2=9,
x-3=,
x1=6或x2=0.
【題型】解答題
【結(jié)束】
19
【題目】(1)已知某數(shù)的平方根是和, 的立方根是,求的平方根.
(2)已知y=+-8,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD沿對(duì)角線AC剪開(kāi),再把△ACD沿CA方向平移得到△ACD,連接AD,BC.若∠ACB=30°,AB=1,CC=x,則下列結(jié)論:①△AAD≌△CCB;②當(dāng)x=1時(shí),四邊形ABCD是菱形;③當(dāng)x=2時(shí),△BDD為等邊三角形.其中正確的是_______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索:小明和小亮在研究一個(gè)數(shù)學(xué)問(wèn)題:已知AB∥CD,AB和CD都不經(jīng)過(guò)點(diǎn)P,探索∠P與∠A,∠C的數(shù)量關(guān)系.
發(fā)現(xiàn):在圖1中,小明和小亮都發(fā)現(xiàn):∠APC=∠A+∠C;
小明是這樣證明的:過(guò)點(diǎn)P作PQ∥AB
∴∠APQ=∠A( )
∵PQ∥AB,AB∥CD.
∴PQ∥CD( )
∴∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
小亮是這樣證明的:過(guò)點(diǎn)作PQ∥AB∥CD.
∴∠APQ=∠A,∠CPQ=∠C
∴∠APQ+∠CPQ=∠A+∠C
即∠APC=∠A+∠C
請(qǐng)?jiān)谏厦孀C明過(guò)程的過(guò)程的橫線上,填寫依據(jù);兩人的證明過(guò)程中,完全正確的是 .
應(yīng)用:
在圖2中,若∠A=120°,∠C=140°,則∠P的度數(shù)為 ;
在圖3中,若∠A=30°,∠C=70°,則∠P的度數(shù)為 ;
拓展:
在圖4中,探索∠P與∠A,∠C的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次數(shù)學(xué)課上,小明同學(xué)給小剛同學(xué)出了一道數(shù)形結(jié)合的綜合題,他是這樣出的:如圖,數(shù)軸上兩個(gè)動(dòng)點(diǎn) M,N 開(kāi)始時(shí)所表示的數(shù)分別為﹣10,5,M,N 兩點(diǎn)各自以一定的速度在數(shù)軸上運(yùn)動(dòng),且 M 點(diǎn)的運(yùn)動(dòng)速度為2個(gè)單位長(zhǎng)度/s.
(1)M,N 兩點(diǎn)同時(shí)出發(fā)相向而行,在原點(diǎn)處相遇,求 N 點(diǎn)的運(yùn)動(dòng)速度.
(2)M,N 兩點(diǎn)按上面的各自速度同時(shí)出發(fā),向數(shù)軸正方向運(yùn)動(dòng),幾秒時(shí)兩點(diǎn)相距6個(gè)單位長(zhǎng)度?
(3)M,N 兩點(diǎn)按上面的各自速度同時(shí)出發(fā),向數(shù)軸負(fù)方向運(yùn)動(dòng),與此同時(shí),C 點(diǎn)從原點(diǎn)出發(fā)沿同方向運(yùn)動(dòng),且在運(yùn)動(dòng)過(guò)程中,始終有 CN:CM=1:2.若干秒后,C 點(diǎn)在﹣12 處,求此時(shí) N 點(diǎn)在數(shù)軸上的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,有若干個(gè)橫坐標(biāo)分別為整數(shù)的點(diǎn),其順序按圖中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),….根據(jù)這個(gè)規(guī)律,第2 025個(gè)點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com