【題目】如圖所示,一副籃架由配重、支架、籃板與籃筐組成,在立柱的C點觀察籃板上沿D點的仰角為45°,在支架底端的A點觀察籃板上沿D點的仰角為54°,點C與籃板下沿點E在同一水平線,若AB=1.91米,籃板高度DE為1.05米,求籃板下沿E點與地面的距離.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin54°≈0.80, cos54°≈0.60,tan54°≈1.33)
【答案】籃板下沿E點沿與地面的距離為2.9米.
【解析】
過D作DF⊥AB的延長線于F,連接CE,根據(jù)題目已知條件可以得到CE=DE=1.05,四邊形CBFE為矩形,利用矩形的性質(zhì)CE=BF=1.05,最后利用解直角三角形即可得出結(jié)果.
解:如圖所示,過D作DF⊥AB的延長線于F,連接CE.
在Rt△DEC中,∠DCE=45°,DE=1.05(米),
∴CE=DE=1.05(米),
∵∠CBF=∠F=∠CEF=90°,
∴四邊形CBFE為矩形,
∴CE=BF=1.05(米),
∴AF=AB+BF=2.96(米),
在Rt△AFD中,AF=2.96(米),∠DAF=54°,
由DF=AF·tan54°得DF≈3.94(米),
∴EF=3.94-1.05≈2.9(米).
答:籃板下沿E點沿與地面的距離為2.9米.
科目:初中數(shù)學 來源: 題型:
【題目】2019年12月以來,湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強.為了有效地避免交叉感染,需要采取以下防護措施:①戴口罩;②勤洗手;③少出門;④重隔離;⑤捂口鼻;⑥謹慎吃.某公司為了解員工對防護措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過網(wǎng)上問卷調(diào)查的方式進行了隨機抽樣調(diào)查(每名員工必須且只能選擇一項),并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖.
請你根據(jù)上面的信息,解答下列問題
(1)本次共調(diào)查了 名員工,條形統(tǒng)計圖中m= ;
(2)扇形統(tǒng)計圖中“很了解”扇形所對應的圓心角度數(shù)是_____________;
(3)若該公司共有員工1200名,請你估計不了解防護措施的人數(shù);
(4)在調(diào)查中,發(fā)現(xiàn)有4名員工對防護措施很了解,其中有3名男員工、1名女員工.若準備從他們中隨機抽取2名,讓其在公司群內(nèi)普及防護措施,求恰好抽中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年夏季全國各地總有未成年人因溺水而喪失生命,令人痛心疾首.今年某校為確保學生安全,開展了“遠離溺水·珍愛生命”的防溺水安全知識競賽.現(xiàn)從該校七、八年級中各隨機抽取10名學生的競賽成績(百分制)進行整理、描述和分析(成績得分用表示,共分成四組:..C.D.),下面給出了部分信息:
七年級10名學生的競賽成績是:99,80,99,86,99,96,90,100,89,82
八年級10名學生的競賽成績在組中的數(shù)據(jù)是:94,90,94
八年級抽取的學生競賽成績扇形統(tǒng)計圖:
七、八年級抽取的學生競賽成績統(tǒng)計表:
年級 | 七年級 | 八年級 |
平均數(shù) | 92 | |
中位數(shù) | 93 | 94 |
眾數(shù) | 99 | 100 |
方差 | 52 | 50.4 |
根據(jù)以上信息,解答下列問題:
(1)直接寫出上述圖表中的值;
(2)根據(jù)以上數(shù)據(jù),你認為該校七、八年級學生掌握防溺水安全知識較好?請說明理由(一條理由即可);
(3)該校七、八年級共720人參加了此次競賽活動,估計參加此次競賽活動成績優(yōu)秀()的學生人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,BC=5,∠ABC=60°. 按以下步驟作圖:①以C為圓心,以適當長為半徑做弧,交CB、CD于M、N兩點;②分別以M、N為圓心,以大于MN的長為半徑作弧,兩弧相交于點E,作射線CE交BD于點O,交AD邊于點F;則BO的長度為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“半日走遍江淮大地,安徽風景盡在徽園”,位于省會合肥的徽園景點某年三月共接待游客萬人,四月比三月旅游人數(shù)增加了,五月比四月游客人數(shù)增加了,已知三月至五月徽園的游客人數(shù)平均月增長率為,則可列方程為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AD是BC邊上的高,E是AC的中點,P是AD上的一個動點,當PC與PE的和最小時,∠CPE的度數(shù)是( )
A.30°B.45°C.60°D.90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,⊙O為△ABC的外接圓,BC為直徑,點E在AB上,過點E作EF⊥BC,點G在FE的延長線上,且GA=GE.
(1)求證:AG與⊙O相切.
(2)若AC=6,AB=8,BE=3,求線段OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線頂點A的坐標為(1,4),拋物線與x軸相交于B、C兩點,與y軸交于點E(0,3).
(1)求拋物線的表達式;
(2)已知點F(0,﹣3),在拋物線的對稱軸上是否存在一點G,使得EG+FG最小,如果存在,求出點G的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com