精英家教網 > 初中數學 > 題目詳情
如圖1所示,一張三角形紙片ABC,∠ACB=90°,AC=8,BC=6.沿斜邊AB的中線CD把這張紙片剪成△AC1D1和△BC2D2兩個三角形(如圖所示).將紙片△AC1D1沿直線D2B(AB)方向平移(點A,D1,D2,B始終在同一直線上),當點D1于點B重合時,停止平移.在平移過程中,C1D1與BC2交于點E,AC1與C2D2、BC2分別交于點F、P.
(1)當△AC1D1平移到如圖3所示的位置時,猜想圖中的D1E與D2F的數量關系,并證明你的猜想;
(2)設平移距離D2D1為x,△AC1D1與△BC2D2重疊部分面積為y,請寫出y與x的函數關系式,以及自變量的取值范圍;
(3)對于(2)中的結論是否存在這樣的x的值使得y=
1
4
S△ABC;若不存在,請說明理由.
(1)D1E=D2F.
∵C1D1C2D2
∴∠C1=∠AFD2
又∵∠ACB=90°,CD是斜邊上的中線,
∴DC=DA=DB,即C1D1=C2D2=BD2=AD1
∴∠C1=∠A,
∴∠AFD2=∠A
∴AD2=D2F.
同理:BD1=D1E.
又∵AD1=BD2,
∴AD2=BD1
∴D1E=D2F.

(2)∵在Rt△ABC中,AC=8,BC=6,
∴由勾股定理,得AB=10.
即AD1=BD2=C1D1=C2D2=5
又∵D2D1=x,
∴D1E=BD1=D2F=AD2=5-x.
∴C2F=C1E=x
在△BC2D2中,C2到BD2的距離就是△ABC的AB邊上的高,為
24
5

設△BED1的BD1邊上的高為h,
由探究,得△BC2D2△BED1,
h
24
5
=
5-x
5

∴h=
24(5-x)
25
.S△BED1=
1
2
×BD1×h=
12
25
(5-x)2
又∵∠C1+∠C2=90°,
∴∠FPC2=90度.
又∵∠C2=∠B,sinB=
4
5
,cosB=
3
5

∴PC2=
3
5
x,PF=
4
5
x,S△FC2P=
1
2
PC2×PF=
6
25
x2
而y=S△BC2D2-S△BED1-S△FC2P=
1
2
S△ABC-
12
25
(5-x)2-
6
25
x2
∴y=-
18
25
x2+
24
5
x(0≤x≤5).

(3)存在.
當y=
1
4
S△ABC時,即-
18
25
x2+
24
5
x=6,
整理得3x2-20x+25=0.
解得,x1=
5
3
,x2=5.
即當x=
5
3
或x=5時,重疊部分的面積等于原△ABC面積的
1
4
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸交于點A(-1,0),B(4,0),與y軸交于點C(0,-2).
(1)求此拋物線的解析式;
(2)若D點在此拋物線上,且ADCB,在x軸上是否存在點E,使得以A,D,E為頂點的三角形與△ABC相似?若存在,求出點E的坐標;若不存在,請說明理由;
(3)在(2)的條件下,問在x軸下方的拋物線上,是否存在點P使得△APD的面積與四邊形ACBD的面積相等?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,點A在拋物線y=
1
4
x2上,過點A作與x軸平行的直線交拋物線于點B,延長AO,BO分別與拋物線y=-
1
8
x2相交于點C,D,連接AD,BC,設點A的橫坐標為m,且m>0.
(1)當m=1時,求點A,B,D的坐標;
(2)當m為何值時,四邊形ABCD的兩條對角線互相垂直;
(3)猜想線段AB與CD之間的數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖所示的平面直角坐標系中,有一條拋物線y=ax2+bx+c交x軸于A、B兩點,交y軸于點C,已知拋物線的對稱軸為x=1,B(3,0),C(0,-3).
(1)求二次函數y=ax2+bx+c的解析式;
(2)在拋物線對稱軸上是否存在一點P,使點P到A、C兩點距離之和最小?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知如圖,矩形OABC的長OA=
3
,寬OC=1,將△AOC沿AC翻折得△APC.
(1)填空:∠PCB=______度,P點坐標為______;
(2)若P,A兩點在拋物線y=-
4
3
x2+bx+c上,求b,c的值,并說明點C在此拋物線上;
(3)在(2)中的拋物線CP段(不包括C,P點)上,是否存在一點M,使得四邊形MCAP的面積最大?若存在,求出這個最大值及此時M點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖所示,拋物線y=ax2+bx+c經過原點O,與x軸交于另一點N,直線y=kx+4與兩坐標軸分別交于A、D兩點,與拋物線交于B(1,m)、C(2,2)兩點.
(1)求直線與拋物線的解析式;
(2)若拋物線在x軸上方的部分有一動點P(x,y),設∠PON=α,求當△PON的面積最大時tanα的值;
(3)若動點P保持(2)中的運動路線,問是否存在點P,使得△POA的面積等于△PON面積的
8
15
?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,△ABC的高AD為3,BC為4,直線EFBC,交線段AB于E,交線段AC于F,交AD于G,以EF為斜邊作等腰直角三角形PEF(點P與點A在直線EF的異側),設EF為x,△PEF與四邊形BCEF重合部分的面積為y.
(1)求線段AG(用x表示);
(2)求y與x的函數關系式,并求x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知拋物線y=x2+bx-a2
(1)請你選定a、b適當的值,然后寫出這條拋物線與坐標軸的三個交點,并畫出過三個交點的圓;
(2)試討論此拋物線與坐標軸交點分別是1個,2個,3個時,a、b的取值范圍,并且求出交點坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在△ABC中,BC=7cm,AC=24cm,AB=25cm,P點在BC上,從B點到C點運動(不包括C點),點P運動的速度為2cm/s;Q點在AC上從C點運動到A點(不包括A點),速度為5cm/s.若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出探索的主要過程:
(1)經過多少時間后,P、Q兩點的距離為5
2
cm2?
(2)經過多少時間后,S△PCQ的面積為15cm2?
(3)請用配方法說明,何時△PCQ的面積最大,最大面積是多少?

查看答案和解析>>

同步練習冊答案