【題目】如圖,兩正方形彼此相鄰且內(nèi)接于半圓,若小正方形的面積為16cm2,則該半圓的半徑為()

A. cm B. 9 cm

C. cm D. cm

【答案】C

【解析】

連接OA、OB、OE,

∵四邊形ABCD是正方形,

∴AD=BC,∠ADO=∠BCO=90°,

∵在Rt△ADORt△BCO

∴Rt△ADO≌Rt△BCO,

∴OD=OC,

∵四邊形ABCD是正方形,

∴AD=DC,

設(shè)AD=acm,則OD=OC=DC=AD=acm,

在△AOD中,由勾股定理得:OA=OB=OE=acm,

∵小正方形EFCG的面積為16cm2

∴EF=FC=4cm,

在△OFE中,由勾股定理得:(a)2=42+(a+4)2,

解得:a=-4(舍去),a=8,

a =4(cm),

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)與一次函數(shù)

圖像交于點(diǎn)A

(1)求點(diǎn)A的坐標(biāo);

(2)在y軸上確定點(diǎn)M,使得△AOM是等腰三角形,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo);

(3)如圖,設(shè)x軸上一點(diǎn)Pa0),過(guò)點(diǎn)Px軸的垂線(垂線位于點(diǎn)A的右側(cè)),分別交的圖像于點(diǎn)B、C,連接OC,若BC=OA,求△ABC的面積及點(diǎn)B、點(diǎn)C的坐標(biāo);

(4)在(3)的條件下,設(shè)直線x軸于點(diǎn)D,在直線BC上確定點(diǎn)E,使得△ADE的周長(zhǎng)最小,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在ABC中,∠ACB=90°,AC=BC,PCQ=45°,把∠PCQ繞點(diǎn)C旋轉(zhuǎn),在整個(gè)旋轉(zhuǎn)過(guò)程中,過(guò)點(diǎn)AADCP,垂足為D,直線ADCQE

1)如圖①,當(dāng)∠PCQ在∠ACB內(nèi)部時(shí),求證:AD+BE=DE

2)如圖②,當(dāng)CQ在∠ACB外部時(shí),則線段ADBEDE的關(guān)系為_____;

3)在(1)的條件下,若CD=6,SBCE=2SACD,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在平面直角坐標(biāo)系中,每個(gè)小正方形的邊長(zhǎng)為1,ABC的頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(-3,2).請(qǐng)按要求分別完成下列各小題:

(1)把ABC向下平移7個(gè)單位,再向右平移7個(gè)單位,得到A1B1C1,畫(huà)出A1B1C1;

(2)畫(huà)出A1B1C1關(guān)于x軸對(duì)稱(chēng)的A2B2C2

畫(huà)出A1B1C1關(guān)于y軸對(duì)稱(chēng)的A3B3C3;

(3)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=∠CAE=90o,AB=AD,AE=AC, AF⊥CF,垂足為F.

(1)若AC=10,求四邊形ABCD的面積;

(2)求證:AC平分∠ECF;

(3)求證:CE=2AF .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】創(chuàng)衛(wèi)工作人人參與,環(huán)境衛(wèi)生人人受益,我區(qū)創(chuàng)衛(wèi)工作已進(jìn)入攻堅(jiān)階段某校擬整修學(xué)校食堂,現(xiàn)需購(gòu)買(mǎi)A、B兩種型號(hào)的防滑地磚共60塊,已知A型號(hào)地磚每塊80元,B型號(hào)地磚每塊40元

1若采購(gòu)地磚的費(fèi)用不超過(guò)3200元,那么,最多能購(gòu)買(mǎi)A型號(hào)地磚多少塊?

2某地磚供應(yīng)商為了支持創(chuàng)衛(wèi)工作,現(xiàn)將A、B兩種型號(hào)的地磚單價(jià)都降低a%,這樣,該;ㄙM(fèi)了2560元就購(gòu)得所需地磚,其中A型號(hào)地磚a塊,求a的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩輛汽車(chē)沿同一路線從A地前往B地,甲車(chē)以a千米/時(shí)的速度勻速行駛,途中出現(xiàn)故障后停車(chē)維修,修好后以2a千米/時(shí)的速度繼續(xù)行駛;乙車(chē)在甲車(chē)出發(fā)2小時(shí)后勻速前往B地,比甲車(chē)早30分鐘到達(dá).到達(dá)B地后,乙車(chē)按原速度返回A地,甲車(chē)以2a千米/時(shí)的速度返回A地.設(shè)甲、乙兩車(chē)與A地相距s(千米),甲車(chē)離開(kāi)A地的時(shí)間為t(小時(shí)),st之間的函數(shù)圖象如圖所示.下列說(shuō)法:①a=40;②甲車(chē)維修所用時(shí)間為1小時(shí);③兩車(chē)在途中第二次相遇時(shí)t的值為5.25;④當(dāng)t=3時(shí),兩車(chē)相距40千米,其中不正確的個(gè)數(shù)為( 。

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線與直線相交于A、B兩點(diǎn).第一象限上的點(diǎn)M(m,n)(A點(diǎn)左側(cè))雙曲線的動(dòng)點(diǎn).過(guò)點(diǎn)B作BD∥y軸交x軸于點(diǎn)D.過(guò)N(0,-n)作NC∥x軸交雙曲線于點(diǎn)E,交BD于點(diǎn)C.

(1)若點(diǎn)D坐標(biāo)是(-8,0),求A、B兩點(diǎn)坐標(biāo)及k的值

(2)B是CD的中點(diǎn),四邊形OBCE的面積為4,求直線CM的解析式

(3)設(shè)直線AM、BM分別與y軸相交于P、Q兩點(diǎn),且MA=pMP,MB=qMQ,求pq的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的方格紙中,ABC的頂點(diǎn)都在小正方形的頂點(diǎn)上,以小正方形互相垂直的兩邊所在直線建立直角坐標(biāo)系.

1)作出ABC關(guān)于y軸對(duì)稱(chēng)的A1B1C1,其中點(diǎn)A,B,C分別和點(diǎn)A1,B1,C1對(duì)應(yīng);

2)平移ABC,使得點(diǎn)Ax軸上,點(diǎn)By軸上,平移后的三角形記為A2B2C2,作出平移后的A2B2C2,其中點(diǎn)A,BC分別和點(diǎn)A2,B2,C2對(duì)應(yīng);

3)直接寫(xiě)出ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案