【題目】如圖,在中,D,E內(nèi)兩點(diǎn),AD平分,∠EBC=E=60°,若,DE=2,則BC的長(zhǎng)為(

A.4B.6C.8D.10

【答案】C

【解析】

延長(zhǎng)EDBCM,延長(zhǎng)ADBCN,根據(jù)∠EBC=∠E=60°得出△BEM是等邊三角形,從而得出BM=EM=6,然后通過求出DM長(zhǎng)度得出NM,最后得出BN,從而進(jìn)一步解出答案即可.

如圖,延長(zhǎng)EDBCM,延長(zhǎng)ADBCN,

AB=AC,AD平分∠BAC,

ANBC,BN=CN,

∠EBC=∠E=60°,

∴△BEM是等邊三角形,

BE=6DE=2,

DM=4,

∵△BEM是等邊三角形,

∴∠EMB=60°,

ANBC

∴∠NDM=30°,

NM=2,

BN=4

BC=2BN=8.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACB=ECD=90°,AC=BC,EC=DC,點(diǎn)D在AB邊上.

(1)求證:ACE≌△BCD

(2)若AE=3,AD=2.求ED的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.乙兩種商品原來的單價(jià)和為100元,因市場(chǎng)變化,甲商品降價(jià)10%,乙商品提價(jià)40%,調(diào)價(jià)后兩種商品的單價(jià)和比原來的單價(jià)和提高了20%.若設(shè)甲.乙兩種商品原來的單價(jià)分別為x.y元,則可列方程組為_________________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(12),B(31),C(2,-1)

1在圖中作出△ABC 關(guān)于 y 軸對(duì)稱的△A1B1C1并寫出坐標(biāo);

2)求出△A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線l1:y=kx+1,與x軸相交于點(diǎn)A,同時(shí)經(jīng)過點(diǎn)B(2,3),另一條直線l2經(jīng)過點(diǎn)B,且與x軸相交于點(diǎn)P(m,0).

(1)求l1的解析式;

(2)若S△APB=3,求P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y =ax2+bx﹣3a≠0)與x軸交于點(diǎn)A﹣2,0)、B4,0)兩點(diǎn),與y軸交于點(diǎn)C.點(diǎn)P、Q分別是AB、BC上的動(dòng)點(diǎn),當(dāng)點(diǎn)PA點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)QB點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).設(shè)PQ同時(shí)運(yùn)動(dòng)的時(shí)間為t秒(0<t<2).

1)求拋物線的表達(dá)式;

2)設(shè)PBQ的面積為S ,當(dāng)t為何值時(shí),PBQ的面積最大,最大面積是多少?

3)當(dāng)t為何值時(shí),PBQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程,則此方程(

A. 無實(shí)數(shù)根 B. 兩根之和為 C. 兩根之積為 D. 有一個(gè)根為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1的函數(shù)解析式為y=﹣2x+4,且l1與x軸交于點(diǎn)D,直線l2經(jīng)過點(diǎn)A、B,直線l1、l2交于點(diǎn)C.

(1)求直線l2的函數(shù)解析式;

(2)求ADC的面積;

(3)在直線l2上是否存在點(diǎn)P,使得ADP面積是ADC面積的2倍?如果存在,請(qǐng)求出P坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),∠CAB的角平分線AD交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC交AC的延長(zhǎng)線于點(diǎn)E.

(1)求證:DE是⊙O的切線;

(2)若∠CAB=60°,DE=3,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案