【題目】如圖,△ABC的周長為19,點D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為N,∠ACB的平分線垂直于AD,垂足為M,若BC=7,則MN的長度為( )
A. B. 2 C. D. 3
科目:初中數學 來源: 題型:
【題目】如圖1所示,在Rt△ABC中,∠C=90°,點D是線段CA延長線上一點,且AD=AB,點F是線段AB上一點,連接DF,以DF為斜邊作等腰Rt△DFE,連接EA,EA滿足條件EA⊥AB,
(1)若∠AEF=20°,∠ADE=50°,BC=2,求AB的長度.
(2)求證:AE=AF+BC.
(3)如圖2,點F是線段BA延長線上一點,探究AE、AF、BC之間的數量關系,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數,完成下列各題:
將函數關系式用配方法化為的形式,并寫出它的頂點坐標、對稱軸.
求出它的圖象與坐標軸的交點坐標.
在直角坐標系中,畫出它的圖象.
根據圖象說明:當為何值時,;當為何值時,.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(9分)如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若A的對應點A2的坐標為(0,4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2,請直接寫出旋轉中心的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中放置一直角三角板,其頂點為A(﹣1,0),B(0,3),O(0,0),將此三角板繞原點O順時針旋轉90°,得到△A′B′O.
⑴如圖,一拋物線經過點A,B,B′,求該拋物線解析式;
⑵設點P是在第一象限內拋物線上一動點,求使四邊形PBAB′的面積達到最大時點P的坐標及面積的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=ax2+bx+c的圖象如圖所示,給出以下結論:①a+b+c<0;②b2-4ac>0;③b>0;④4a-2b+c<0;⑤c-a>1,其中正確的結論有(。
A. ①②④ B. ①②③ C. ①②⑤ D. ①②④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一節(jié)數學活動課上,王老師將本班學生身高數據(精確到1厘米)出示給大家,要求同學們各自獨立繪制一幅頻數分布直方圖,甲繪制的如圖①所示,乙繪制的如圖②所示,經王老師批改,甲繪制的圖是正確的,乙在數據整理與繪圖過程中均有個別錯誤.
(1)寫出乙同學在數據整理或繪圖過程中的錯誤(寫出一個即可);
(2)甲同學在數據整理后若用扇形統(tǒng)計圖表示,則159.5﹣164.5這一部分所對應的扇形圓心角的度數為 ;
(3)該班學生的身高數據的中位數是 ;
(4)假設身高在169.5﹣174.5范圍的5名同學中,有2名女同學,班主任老師想在這5名同學中選出2名同學作為本班的正、副旗手,那么恰好選中一名男同學和一名女同學當正,副旗手的概率是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,AB=AC,D是斜邊BC的中點,E.F分別是AB、AC邊上的點,且DE⊥DF,
(1)求證:CF=AE;
(2)若BE=8,CF=6,求線段EF的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com