已知:拋物線y=ax2-4ax+m與x軸的一個交點為A(1,0).
(1)求拋物線與x軸的另一個交點B的坐標;
(2)點C是拋物線與y軸的交點,且△ABC的面積為3,求此拋物線的解析式;
(3)點D是(2)中開口向下的拋物線的頂點.拋物線上點C的對稱點為Q,把點D沿對稱軸向下平移5個單位長度,設(shè)這個點為P;點M、N分別是x軸、y軸上的兩個動點,當四邊形PQMN的周長最短時,求PN+MN+QM的長.(結(jié)果保留根號)
解:(1)依題意,拋物線的對稱軸為. 拋物線與x軸的一個交點為A(1,0), ∴由拋物線的對稱性,可得拋物線與x軸的另一個交點B的坐標為(3,0) 1分 (2)拋物線與x軸的一個交點為A(1,0),
∴C(0,3a). 2分 △ABC的面積為3, AB=2,OC=, S△ABC=. ∴=3. ∴,. ∴所求拋物線的解析式為或. 4分 (3)依題意知,拋物線的解析式為: ∴點D(2,1),C(0,-3),P(2,-4). 設(shè)Q(x,y), 點C與點Q關(guān)于x=2對稱, ∴點Q坐標(). 6分 分別作P、Q關(guān)于x軸、y軸的對稱點、,聯(lián)結(jié),分別交x軸、y軸于點M、N.聯(lián)結(jié)PN、MQ,則此時四邊形PQMN的周長最短. 7分 ∴,. 過作E垂直E于E.∴E(). ∴E=6,E=7, 由作圖可知,PN=N,QM=M. ∴PN+MN+QM=N+MN+M==. ∴PN+MN+QM的長為. 8分 |
科目:初中數(shù)學 來源: 題型:
已知拋物線y=ax 2+bx-4a經(jīng)過A(-1,0)、C(0,4)兩點,與x軸交于另一點B.
(1)求拋物線的解析式;
(2)若點D(m,m+1)在第一象限的拋物線上, 求點D關(guān)于直線BC對稱的點的坐標;
(3)在(2)的條件下,連結(jié)BD,若點P為拋物線上一點,且∠DBP=45°,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知拋物線y=ax+bx+c與軸交于兩點,若兩點的橫坐標分別是一元二次方程的兩個實數(shù)根,與軸交于點(0,3),
1.(1)求拋物線的解析式;
2.(2)在此拋物線上求點,使.
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年北京師大附中九年級上學期期中考試數(shù)學卷 題型:解答題
已知拋物線y=ax+bx+c與軸交于兩點,若兩點的橫坐標分別是一元二次方程的兩個實數(shù)根,與軸交于點(0,3),
1.(1)求拋物線的解析式;
2.(2)在此拋物線上求點,使.
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012年北京師大附中九年級第一學期期中考試數(shù)學卷 題型:解答題
已知拋物線y=ax+bx+c與軸交于兩點,若兩點的橫坐標分別是一元二次方程的兩個實數(shù)根,與軸交于點(0,3),
1.(1)求拋物線的解析式;
2.(2)在此拋物線上求點,使.
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆湖南省九年級下學期第一次月考考試數(shù)學卷 題型:選擇題
.(13分)已知拋物線y=ax 2+bx+c經(jīng)過O(0,0),A(4,0),B(3,)三點,連接AB,過點B作BC∥軸交拋物線于點C.動點E、F分別從O、A兩點同時出發(fā),其中點E沿線段OA以每秒1個單位長度的速度向A點運動,點F沿折線A→B→C以每秒1個單位長度的速度向C點運動.設(shè)動點運動的時間為t(秒).
(1)求拋物線的解析式;
(2)記△EFA的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并求S的最大值,指出此時△EFA的形狀;
(3)是否存在這樣的t值,使△EFA是直角三角形?若存在,求出此時E、F兩點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com