年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(3,4)的拋物線交y軸于點(diǎn)A,交x軸于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知點(diǎn)A的坐標(biāo)為A(0,-5).
(1)求此拋物線的解析式;
(2)過點(diǎn)B作線段AB的垂線交拋物線于點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線BD相切,請判斷拋物線的對稱軸l與⊙C有什么位置關(guān)系,并給出證明;
(3)在拋物線上是否存在一點(diǎn)P,使△ACP是以AC為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖①,已知正方形ABCD的邊長為1,點(diǎn)P是AD邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)A關(guān)于直線BP的對稱點(diǎn)是點(diǎn)Q,連接PQ、DQ、CQ、BQ,設(shè)AP=x.
(1) BQ+DQ的最小值是_______,此時(shí)x的值是_______;
(2)如圖②,若PQ的延長線交CD邊于點(diǎn)E,并且∠CQD=90°.
①求證:點(diǎn)E是CD的中點(diǎn);②求x的值.
(3)若點(diǎn)P是射線AD上的一個(gè)動(dòng)點(diǎn),請直接寫出當(dāng)△CDQ為等腰三角形時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB∥CD,AD平分∠BAC,若∠BAD=70°,則∠ACD的度數(shù)為………………( )
A.35° B.40° C.45° D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
為保證中、小學(xué)生每天鍛煉一小時(shí),某校開展了形式多樣的體育活動(dòng)項(xiàng)目,小明對某班同學(xué)參加鍛煉的情況進(jìn)行了統(tǒng)計(jì),并繪制了下面的統(tǒng)計(jì)圖①和圖②.(1)請根據(jù)所給信息在圖①中將表示“乒乓球”項(xiàng)目的圖形補(bǔ)充完整;(2)扇形統(tǒng)計(jì)圖②中表示“足球”項(xiàng)目扇形的扇形圓心角的度數(shù)是 .(3)該校中小學(xué)生共有2000名.請估計(jì)該校共有多少名同學(xué)參加“其他”項(xiàng)目的體育活動(dòng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖12-1和12-2,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于點(diǎn)E.過點(diǎn)A作AF⊥AE,過點(diǎn)C作CF∥AD,兩直線交于點(diǎn)F.
(1)在圖12-1中,證明:△ACF≌△ABE;
(2)在圖12-2中,∠ACB的平分線交AB于點(diǎn)M,交AD于點(diǎn)N.
① 求證:四邊形ANCF是平行四邊形;
② 求證:ME=MA;
③ 四邊形ANCF是不是菱形?若是,請證明;若不是,請簡要說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com