(1)已知二次函數(shù),請(qǐng)你化成的形式,并在直角坐標(biāo)系中畫出的圖象;
(2)如果,是(1)中圖象上的兩點(diǎn),且,請(qǐng)直接寫出的大小關(guān)系;
(3)利用(1)中的圖象表示出方程的根來,要求保留畫圖痕跡,說明結(jié)果.

(1),圖象見解析;(2);(3)詳見解析.

解析試題分析:(1)首先由“”想到應(yīng)化為,此時(shí)比原來多了“1”,因此再減去1,據(jù)此將原函數(shù)解析式變形;畫函數(shù)圖象應(yīng)確定幾個(gè)基本點(diǎn)后,描點(diǎn)連線即可;(2)由圖象可直接判斷,得出結(jié)果;(3)由解析式可知將原圖象向上平移兩個(gè)單位即得到新的函數(shù)圖象,其與x軸的交點(diǎn)即為所求的根.
試題解析:
解:(1).   畫圖象,如圖所示.

(2)
(3)如圖所示,將拋物線向上平移兩個(gè)單位后得到拋物線,拋物線與x軸交于點(diǎn)A、B,則A、B兩點(diǎn)的橫坐標(biāo)即為方程的根.
考點(diǎn):二次函數(shù)的綜合運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)A的坐標(biāo)為(﹣1,0),對(duì)稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)點(diǎn)D是拋物線與y軸的交點(diǎn),點(diǎn)C是拋物線上的另一點(diǎn).若以AB為一底邊的梯形ABCD的面積為9.
求此拋物線的解析式,并指出頂點(diǎn)E的坐標(biāo);
(3)點(diǎn)P是(2)中拋物線對(duì)稱軸上一動(dòng)點(diǎn),且以1個(gè)單位/秒的速度從此拋物線的頂點(diǎn)E向上運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為   秒時(shí),△PAD的周長最?當(dāng)t為     秒時(shí),△PAD是以AD為腰的等腰三角形?(結(jié)果保留根號(hào))
②點(diǎn)P在運(yùn)動(dòng)過程中,是否存在一點(diǎn)P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

定義:把一個(gè)半圓與拋物線的一部分合成封閉圖形,我們把這個(gè)封閉圖形稱為“蛋圓”.如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.如圖,A,B,C,D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,8),AB為半圓的直徑,半圓的圓心M的坐標(biāo)為(1,0),半圓半徑為3.

(1)請(qǐng)你直接寫出“蛋圓”拋物線部分的解析式          ,自變量的取值范圍是          ;
(2)請(qǐng)你求出過點(diǎn)C的“蛋圓”切線與x軸的交點(diǎn)坐標(biāo);
(3)求經(jīng)過點(diǎn)D的“蛋圓”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

一場籃球賽中,小明跳起投籃,已知球出手時(shí)離地面高米,與籃圈中心的水平距離為8米,當(dāng)球出手后水平距離為4米時(shí)到達(dá)最大高度4米,若籃球運(yùn)行的軌跡為拋物線,籃圈中心距離地面3米.

(1)建立如圖的平面直角坐標(biāo)系,求拋物線的解析式;
(2)問此球能否投中?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,用長為20米的籬笆恰好圍成一個(gè)扇形花壇,且扇形花壇的圓心角小于180°,設(shè)扇形花壇的半徑為米,面積為平方米.(注:的近似值取3)

(1)求出的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)當(dāng)半徑為何值時(shí),扇形花壇的面積最大,并求面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

二次函數(shù)的圖象經(jīng)過點(diǎn),
(1)求此二次函數(shù)的關(guān)系式;
(2)求此二次函數(shù)圖象的頂點(diǎn)坐標(biāo);
(3)填空:把二次函數(shù)的圖象沿坐標(biāo)軸方向最少平移  個(gè)單位,使得該圖象的頂點(diǎn)在原點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,拋物線與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(4,0).

(1)求該拋物線的解析式;
(2)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問:是否存在這樣的直線,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線x=﹣4與x軸交于點(diǎn)E,一開口向上的拋物線過原點(diǎn)交線段OE于點(diǎn)A,交直線x=﹣4于點(diǎn)B,過B且平行于x軸的直線與拋物線交于點(diǎn)C,直線OC交直線AB于D,且AD:BD=1:3.

(1)求點(diǎn)A的坐標(biāo);
(2)若△OBC是等腰三角形,求此拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知拋物線上有一點(diǎn)M(x0)位于軸下方.
(1)求證:此拋物線與x軸交于兩點(diǎn);
(2)設(shè)此拋物線與軸的交點(diǎn)為A(,0),B(,0),且<,求證:<<

查看答案和解析>>

同步練習(xí)冊(cè)答案