【題目】已知:如圖,四邊形 ABCD 中,AD∥BC,∠ABC=90°,AB=BC,AE⊥BD,EF⊥CE

(1)試證明△AEF∽△BEC;

(2)如圖,過(guò) C 點(diǎn)作 CH⊥AD H,試探究線段 DH BF 的數(shù)量關(guān)系,并說(shuō)明理由;

(3) AD=1,CD=5,試求出 BE 的值?

【答案】(1)證明見(jiàn)解析;(2)DH=BF,理由見(jiàn)解析;(3)BE=

【解析】

(1)想辦法證明∠AEF=BEC,FAE=EBC即可解決問(wèn)題;

(2)結(jié)論:DH=BF.利用比例的性質(zhì)首先證明AD=AF,再證明四邊形ABCH是正方形即可解決問(wèn)題;

(3)設(shè)正方形的邊長(zhǎng)為x,在RtCDH中,DH=x-1,CH=x,CD=5,可得52=x2+(x-1)2,解得x=4,再通過(guò)解直角三角形求出BE的長(zhǎng)即可.

(1)證明:∵AEBD,EFCE,

∴∠AEB=FEC=90°,

∴∠AEF=BEC,

∵∠ABC=90°,

∴∠ABE+EBC=90°,ABE+FAE=90°,

∴∠FAE=EBC,

∴△AEF∽△BEC;

(2)解:結(jié)論:DH=BF.

理由:∵△AEF∽△BEC,

,

∵∠ABE=ABD,AEB=BAD=90°,

∴△ABE∽△DBA,

,

,BC=AB,

AF=AD,

∵∠ABC=BAD=H=90°,

∴四邊形ABCH是矩形,

AB=BC,

∴四邊形ABCH是正方形,

AB=AH,AF=AD,

BF=DH.

(3)設(shè)正方形的邊長(zhǎng)為x,

RtCDH中,DH=x-1,CH=x,CD=5,

52=x2+(x-1)2

解得x=4,

AB=4,AD=1,

RtABD中,BD=,

ADAB=BDAE,

AE=,

RtAEB中,BE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x+x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),拋物線的對(duì)稱軸與直線AC交于點(diǎn)E

1)若點(diǎn)P為直線AC上方拋物線上的動(dòng)點(diǎn),連接PC,PE,當(dāng)PCE的面積SPCE最大時(shí),點(diǎn)P關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)Q,此時(shí)點(diǎn)T從點(diǎn)Q開(kāi)始出發(fā),沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)至y軸上的點(diǎn)F處,再沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)至x軸上的點(diǎn)G處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)至直線AC上的點(diǎn)H處,求滿足條件的點(diǎn)P的坐標(biāo)及QF+FG+AH的最小值.

2)將BOC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°,邊BO所在直線與直線AC交于點(diǎn)M,將拋物線沿射線CA方向平移個(gè)單位后,頂點(diǎn)D的對(duì)應(yīng)點(diǎn)為D′,點(diǎn)Ry軸上,點(diǎn)N在坐標(biāo)平面內(nèi),當(dāng)以點(diǎn)D′R,M,N為頂點(diǎn)的四邊形是菱形時(shí),請(qǐng)直接寫出N點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),.

1)畫出繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后的圖形,并寫出點(diǎn)的坐標(biāo);

2)將(1)中所得先向左平移4個(gè)單位,再向上平移2個(gè)單位得到,畫出,并寫出點(diǎn)的坐標(biāo);

3)若可以看作繞某點(diǎn)旋轉(zhuǎn)得來(lái),直接寫出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:⊙O的半徑為25cm,弦AB40cm,弦CD48cmABCD.求這兩條平行弦AB,CD之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知反比例函數(shù)常數(shù),.

1若點(diǎn)在這個(gè)函數(shù)的圖象上,求的值;

2若在這個(gè)函數(shù)圖象的每一個(gè)分支上,的增大而增大,求的取值范圍;

3,試判斷點(diǎn)是否在這個(gè)函數(shù)的圖象上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Q上一定點(diǎn),P是弦AB上一動(dòng)點(diǎn),CAP中點(diǎn),連接CQ,過(guò)點(diǎn)P于點(diǎn)D,連接AD,CD

已知,設(shè)A,P兩點(diǎn)間的距離為,C,D兩點(diǎn)間的距離為

(當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),令y的值為1.30

小榮根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探宄.

下面是小榮的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,得到了yx的幾組對(duì)應(yīng)值:

2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)時(shí),AP的長(zhǎng)度約為__________cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC的中線,tanB=,cosC=,AC=

1)求BC的長(zhǎng);

2)作出△ABC的外接圓(尺規(guī)作圖,保留痕跡,不寫作法),并求外接圓半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線軸、軸分別相交于點(diǎn)A(-1,0)和B0,3),其頂點(diǎn)為D

1)求這條拋物線的解析式;

2)畫出此拋物線;

3)若拋物線與軸的另一個(gè)交點(diǎn)為E,求ODE的面積;

4)拋物線的對(duì)稱軸上是否存在點(diǎn)P使得PAB的周長(zhǎng)最短。若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,AB4,點(diǎn)EBC上的一個(gè)動(dòng)點(diǎn),將CDE繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°,得到CDE,則A,D兩點(diǎn)距離的最小值等于_____

查看答案和解析>>

同步練習(xí)冊(cè)答案