【題目】已知:如圖,四邊形 ABCD 中,AD∥BC,∠ABC=90°,AB=BC,AE⊥BD,EF⊥CE
(1)試證明△AEF∽△BEC;
(2)如圖,過(guò) C 點(diǎn)作 CH⊥AD 于 H,試探究線段 DH 與 BF 的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若 AD=1,CD=5,試求出 BE 的值?
【答案】(1)證明見(jiàn)解析;(2)DH=BF,理由見(jiàn)解析;(3)BE=.
【解析】
(1)想辦法證明∠AEF=∠BEC,∠FAE=∠EBC即可解決問(wèn)題;
(2)結(jié)論:DH=BF.利用比例的性質(zhì)首先證明AD=AF,再證明四邊形ABCH是正方形即可解決問(wèn)題;
(3)設(shè)正方形的邊長(zhǎng)為x,在Rt△CDH中,DH=x-1,CH=x,CD=5,可得52=x2+(x-1)2,解得x=4,再通過(guò)解直角三角形求出BE的長(zhǎng)即可.
(1)證明:∵AE⊥BD,EF⊥CE,
∴∠AEB=∠FEC=90°,
∴∠AEF=∠BEC,
∵∠ABC=90°,
∴∠ABE+∠EBC=90°,∠ABE+∠FAE=90°,
∴∠FAE=∠EBC,
∴△AEF∽△BEC;
(2)解:結(jié)論:DH=BF.
理由:∵△AEF∽△BEC,
∴,
∵∠ABE=∠ABD,∠AEB=∠BAD=90°,
∴△ABE∽△DBA,
∴,
∴,∵BC=AB,
∴AF=AD,
∵∠ABC=∠BAD=∠H=90°,
∴四邊形ABCH是矩形,
∵AB=BC,
∴四邊形ABCH是正方形,
∴AB=AH,∵AF=AD,
∴BF=DH.
(3)設(shè)正方形的邊長(zhǎng)為x,
在Rt△CDH中,DH=x-1,CH=x,CD=5,
∴52=x2+(x-1)2,
解得x=4,
∴AB=4,AD=1,
在Rt△ABD中,BD=,
∵ADAB=BDAE,
∴AE=,
在Rt△AEB中,BE=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x+與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),拋物線的對(duì)稱軸與直線AC交于點(diǎn)E.
(1)若點(diǎn)P為直線AC上方拋物線上的動(dòng)點(diǎn),連接PC,PE,當(dāng)△PCE的面積S△PCE最大時(shí),點(diǎn)P關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)Q,此時(shí)點(diǎn)T從點(diǎn)Q開(kāi)始出發(fā),沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)至y軸上的點(diǎn)F處,再沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)至x軸上的點(diǎn)G處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)至直線AC上的點(diǎn)H處,求滿足條件的點(diǎn)P的坐標(biāo)及QF+FG+AH的最小值.
(2)將△BOC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°,邊BO所在直線與直線AC交于點(diǎn)M,將拋物線沿射線CA方向平移個(gè)單位后,頂點(diǎn)D的對(duì)應(yīng)點(diǎn)為D′,點(diǎn)R在y軸上,點(diǎn)N在坐標(biāo)平面內(nèi),當(dāng)以點(diǎn)D′,R,M,N為頂點(diǎn)的四邊形是菱形時(shí),請(qǐng)直接寫出N點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),,.
(1)畫出繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后的圖形,并寫出點(diǎn)的坐標(biāo);
(2)將(1)中所得先向左平移4個(gè)單位,再向上平移2個(gè)單位得到,畫出,并寫出點(diǎn)的坐標(biāo);
(3)若可以看作繞某點(diǎn)旋轉(zhuǎn)得來(lái),直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:⊙O的半徑為25cm,弦AB=40cm,弦CD=48cm,AB∥CD.求這兩條平行弦AB,CD之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知反比例函數(shù)(常數(shù),).
(1)若點(diǎn)在這個(gè)函數(shù)的圖象上,求的值;
(2)若在這個(gè)函數(shù)圖象的每一個(gè)分支上,隨的增大而增大,求的取值范圍;
(3)若,試判斷點(diǎn)是否在這個(gè)函數(shù)的圖象上,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Q是上一定點(diǎn),P是弦AB上一動(dòng)點(diǎn),C為AP中點(diǎn),連接CQ,過(guò)點(diǎn)P作交于點(diǎn)D,連接AD,CD.
已知,設(shè)A,P兩點(diǎn)間的距離為,C,D兩點(diǎn)間的距離為.
(當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),令y的值為1.30)
小榮根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探宄.
下面是小榮的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,得到了y與x的幾組對(duì)應(yīng)值:
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問(wèn)題:當(dāng)時(shí),AP的長(zhǎng)度約為__________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是△ABC的中線,tanB=,cosC=,AC=
(1)求BC的長(zhǎng);
(2)作出△ABC的外接圓(尺規(guī)作圖,保留痕跡,不寫作法),并求外接圓半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與軸、軸分別相交于點(diǎn)A(-1,0)和B(0,3),其頂點(diǎn)為D。
(1)求這條拋物線的解析式;
(2)畫出此拋物線;
(3)若拋物線與軸的另一個(gè)交點(diǎn)為E,求△ODE的面積;
(4)拋物線的對(duì)稱軸上是否存在點(diǎn)P使得△PAB的周長(zhǎng)最短。若存在請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=4,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),將△CDE繞著點(diǎn)E逆時(shí)針旋轉(zhuǎn)90°,得到△C′D′E,則A,D′兩點(diǎn)距離的最小值等于_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com