已知a,b,c滿(mǎn)足|2a-4|+|b+2|+
(a-3)b2
+a2+c2=2+2ac,且b≠0,則函數(shù)y=ax2-bx+c的最小值是
 
考點(diǎn):二次函數(shù)的最值,非負(fù)數(shù)的性質(zhì):偶次方,二次根式有意義的條件,配方法的應(yīng)用
專(zhuān)題:計(jì)算題
分析:根據(jù)非負(fù)數(shù)的性質(zhì)求出a、b、c的值,得到函數(shù)解析式,利用解析式即可求出函數(shù)y=ax2-bx+c的最小值.
解答:解:
∵|2a-4|+|b+2|+
(a-3)b2
+a2+c2=2+2ac,
移項(xiàng)得|2a-4|+|b+2|+
(a-3)b2
+a2+c2-2ac=2,
整理得|2a-4|+|b+2|+
(a-3)b2
+(a-c)2=2.
當(dāng)b不等于0
則 b2>0,
則(a-3)≥0,
∴a≥3,
∵a≥3,
∴|2a-4|≥2,
∵各部分都大于0且等號(hào)右邊為2,
∴|2a-4|=2,
a=3,
再整理得|b+2|+(a-c)2=0,
b=-2,
a=c=3,
∴函數(shù)y=ax2-bx+c的解析式為y=3x2+2x+3=3(x+
1
3
2+
8
3
;
∴函數(shù)最小值為
8
3

故答案為
8
3
點(diǎn)評(píng):本題考查了二次函數(shù)的最小值,根據(jù)非負(fù)數(shù)的性質(zhì)求出函數(shù)解析式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方形ABCD中,從點(diǎn)A引兩條射線(xiàn)?1,?2,分別過(guò)點(diǎn)B、D作?1,?2的垂線(xiàn),垂足為B1,B2,D1,D2,連接B1B2、D1D2.試探求B1B2與D1D2之間數(shù)量的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知m,n均為正整數(shù),且滿(mǎn)足
4m
3
-75=n+
2m
9
,則當(dāng)m=
 
時(shí),n取得最小值
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

滿(mǎn)足
1
3
-
2
<x<
2
6
-
5
的整數(shù)x的個(gè)數(shù)是 ( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,⊙O 是△ABC 的外接圓,BC=a,CA=b,且∠A-∠B=90°.則⊙O的半徑為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)a、b、c滿(mǎn)足
1
a2
+
1
b2
+
1
c2
=|
1
a
+
1
b
+
1
c
|,a≥b≥c 且則直線(xiàn)y=
a
b
x+
c
b
必定經(jīng)過(guò)
 
象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB∥CD,直線(xiàn)l分別交AB、CD于點(diǎn)E、F,EG平分∠BEF,若∠EFG=50°,則∠EGD的度數(shù)是( 。
A、115°B、125°
C、130°D、100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知⊙O1與⊙O2的半徑分別為1和2,且它們的兩條公切線(xiàn)互相垂直,則圓心距O1O2的長(zhǎng)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是由三個(gè)棱長(zhǎng)為1的正方體組成的幾何體,則從前往后看得到的投影是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案