【題目】如圖,在 △ABC 中,∠C=90°,DB⊥BC 于點 ,分別以點 D 和點 為圓心,以大于 的長為半徑作弧,兩弧相交于點 E 和點 ,作直線 EF,延長 AB 于點 ,連接 DG,下面是說明 ∠A=∠D 的說理過程,請把下面的說理過程補充完整:
因為 DB⊥BC(已知),
所以 ∠DBC=90°( ) .
因為 ∠C=90°(已知),
所以 ∠DBC=∠C(等量代換),
所以 DB∥AC ( ) ,
所以 (兩直線平行,同位角相等);
由作圖法可知:直線 EF 是線段 DB 的 ( ) ,
所以 GD=GB,線段 (上的點到線段兩端點的距離相等),
所以 ( ) ,因為 ∠A=∠1(已知),
所以 ∠A=∠D(等量代換).
【答案】垂直的定義;內(nèi)錯角相等,兩直線平行;∠A;∠1;垂直平分線;垂直平分線;∠1;∠D;等邊對等角
【解析】先利用平行線的判定方法證明DB∥AC,則根據(jù)平行線的性質(zhì)得到∠A=∠1;由作圖法可知直線EF是線段DB的垂直平分線,則GD=GB,所以∠1=∠D,然后利用等兩代換得到∠A=∠D.
因為DB⊥BC(已知)
所以∠DBC=90°(垂直的定義)①
因為∠C=90°(已知)
所以∠DBC=∠C(等量代換)
所以DB∥AC(內(nèi)錯角相等,兩直線平行)②
所以∠A=∠1③(兩直線平行,同位角相等);
由作圖法可知:直線EF是線段DB的(垂直平分線)④
所以GD=GB(線段垂直平分線上的點到線段兩端點的距離相等)⑤
所以∠1=∠D(等邊對等角)⑥,
因為∠A=∠1(已知)
所以∠A=∠D(等量代換).
故答案為垂直的定義;內(nèi)錯角相等,兩直線平行;∠A,∠1;垂直平分線;垂直平分線;∠1,∠D;等邊對等角.
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y= 過點A(2,4),B(0,3)、題目中的矩形部分是一段因墨水污染而無法辨認的文字.
(1)根據(jù)現(xiàn)有的信息,請求出題中的一次函數(shù)的解析式.
(2)根據(jù)關系式畫出這個函數(shù)圖象.
(3)過點B能不能畫出一直線BC將△ABO(O為坐標原點)分成面積比為1:2的兩部分?如能,可以畫出幾條,并求出其中一條直線所對應的函數(shù)關系式,其它的直接寫出函數(shù)關系式;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是邊長為4 的等邊△ABC的內(nèi)心,將△OBC繞點O逆時針旋轉(zhuǎn)30°得到△OB1C1 , B1C1交BC于點D,B1C1交AC于點E,則DE= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了切實關注、關愛貧困家庭學生,某校對全校各班貧困家庭學生的人數(shù)情況進行了統(tǒng)計,以便國家精準扶貧政策有效落實.統(tǒng)計發(fā)現(xiàn)班上貧困家庭學生人數(shù)分別有2名、3名、4名、5名、6名,共五種情況.并將其制成了如下兩幅不完整的統(tǒng)計圖:
(1)求該校一共有多少個班?并將條形圖補充完整;
(2)某愛心人士決定從2名貧困家庭學生的這些班級中,任選兩名進行幫扶,請用列表法或樹狀圖的方法,求出被選中的兩名學生來自同一班級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,下列n(n為正整數(shù))個關于x的一元二次方程: ①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,,…
(1)上述一元二次方程的解為①________,②________,③________,④________.
(2)猜想:第n個方程為________,其解為________.
(3)請你指出這n個方程的根有什么共同的特點(寫出一條即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,AC為對角線,點E為AC上一點,連接EB,ED.
(1)求證:△BEC≌△DEC;
(2)延長BE交AD于點F,當∠BED=120°時,求∠EFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果一個多邊形的各邊都相等,且各內(nèi)角也都相等,那么這個多邊形就叫做正多邊形,如圖,就是一組正多邊形,觀察每個正多邊形中的變化情況,解答下列問題.
(1)將下面的表格補充完整:
(2)根據(jù)規(guī)律,是否存在一個正n邊形,使其中的?若存在,直接寫出的值;若不存在,請說明理由.
(3)根據(jù)規(guī)律,是否存在一個正n邊形,使其中的?若存在,直接寫出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 在平面直角坐標系中的位置如圖所示.
(1)作關于點成中心對稱的 .
(2)將向右平移4個單位,作出平移后的.
(3)在軸上求作一點,使的值最小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按要求完成下列證明:
已知:如圖,AB∥CD,直線AE交CD于點C,∠BAC+∠CDF=180°.
求證:AE∥DF.
證明: ∵AB∥CD(____________________________) ,
∴∠BAC=∠DCE(__________________________________________________________________________).
∵∠BAC+∠CDF=180°(已知),
∴____________ +∠CDF=180°(____________________________________).
∴AE∥DF(______________________________________________________________________).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com