【題目】如圖,已知正方形ABCD,AB=3,點E在線段AB上,AE=1連結DE,DE的垂直平分線交DE于點P,交DC的延長線于點Q,PQ交BC于點G,連結EQ,EQ交BC于點F,連結GE.

(1)求證:△ADE∽△PQD;
(2)求線段CQ的長;
(3)求∠EGB的正切值.

【答案】
(1)證明:∵四邊形ABCD是正方形,

∴DC∥AB,

∴∠AED=∠PDQ,又∠DAE=∠QPD=90°,

∴△ADE∽△PQD


(2)解:由勾股定理得,DE= =

∵PQ是DE的垂直平分線,

∴DP= DE= ,

∵△ADE∽△PQD,

= ,即 = ,

解得,DQ=5,

則CQ=DQ﹣DC=5﹣3=2


(3)解:由勾股定理得,PQ= = ,

∵∠QCG=∠QPD=90°,∠CQG=∠PQD,

∴△CQG∽△PQD,

= ,即 = ,

解得,CG= ,

∴BG=3﹣ = ,

∴tan∠EGB= =


【解析】(1)根據(jù)正方形的性質(zhì)得到DC∥AB,得到∠AED=∠PDQ,根據(jù)兩角對應相等的兩個三角形相似證明;
(2)根據(jù)勾股定理求出DE,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可;
(3)根據(jù)相似三角形的性質(zhì)求出CG,根據(jù)正切的概念計算即可.

【考點精析】解答此題的關鍵在于理解勾股定理的概念的相關知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對正方形的性質(zhì)的理解,了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】補全解答過程:

已知:如圖,直線ABCD,直線EF與直線ABCD分別交于點G、HGM平分∠FGB,∠3=60°,求∠1的度數(shù)。

:EFCD交于點H(已知)

∴∠3=4(_______________)

∵∠3=60°(已知)

∴∠4=60°(______________)

ABCD,EFABCD交于點GH(已知)

∴∠4+FGB=180°(______________)

∴∠FGB=______°

GM平分∠FGB(已知)

∴∠1=_____°(______________)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點P從點A出發(fā),沿ADEFGB的路線繞多邊形的邊勻速運動到點B時停止(不含點A和點B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩座城市的中心火車站A,B兩站相距360km.一列動車與一列特快列車分別從A,B兩站同時出發(fā)相向而行,動車的平均速度比特快列車快54km/h,當動車到達B站時,特快列車恰好到達距離A站135km處的C站.則動車的平均速度是 , 特快列車的平均速度是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當三角形中一個內(nèi)角是另一個內(nèi)角的3倍時,我們稱此三角形為“夢想三角形”.如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內(nèi)角的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2= 的圖象相交于A,B兩點,與x軸相交于點C.已知tan∠BOC= ,點B的坐標為(m,n).

(1)求反比例函數(shù)的解析式;
(2)請直接寫出當x<m時,y2的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格紙中,點A、B、C在小正方形的頂點上.

1)求的面積;

2)在圖中畫出與關于直線1成軸對稱的;

3)在如圖所示網(wǎng)格紙中,以為一邊作與全等的三角形,可以作出多少個三角形與全等(不要超出網(wǎng)格紙的范圍).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的三個頂點的坐標分別為,.

1)在圖中畫出關于軸的對稱圖形;

2)在圖中的軸上找一點,使的值最小(保留作圖痕跡),并直接寫出點的坐標;

3)在圖中的軸上找一點,使的值最。ūA糇鲌D痕跡),并直接寫出的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】運用同一圖形的面積不同表示方式相同可以證明一類含有線段的等式,這種解決問題的方法我們稱之為面積法.

(1)如圖1,在等腰三角形ABC中,AB=AC,AC邊上的高為h,M是底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1、h2.請用面積法證明:h1+h2=h;

(2)當點MBC延長線上時,h1、h2、h之間的等量關系式是   ;(直接寫出結論不必證明)

(3)如圖2在平面直角坐標系中有兩條直線l1:y=x+3、l2:y=﹣3x+3,若l2上的一點Ml1的距離是1,請運用(1)、(2)的結論求出點M的坐標.

查看答案和解析>>

同步練習冊答案