【題目】如圖,半徑為1個單位的圓片上有一點Q與數(shù)軸上的原點重合.(提示:圓的周長C=2πr,結(jié)果保留π的形式)
(1)把圓片沿數(shù)軸向右滾動1周,點Q到達(dá)數(shù)軸上點A的位置,點A表示的數(shù)是 ;
(2)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負(fù)數(shù),依次運(yùn)動情況記錄如下:+2,﹣1,+3,﹣5,﹣1
①第幾次滾動后,Q點距離原點最遠(yuǎn)?
②當(dāng)圓片結(jié)束運(yùn)動時,Q點運(yùn)動的路程共有多少?此時點Q所表示的數(shù)是多少?
【答案】(1)2π;(2)①第3次滾動后,Q點距離原點最遠(yuǎn);②Q點運(yùn)動的路程共有24π,點Q所表示的數(shù)是﹣4π
【解析】
(1)直接利用圓周長公式結(jié)合數(shù)軸得出答案;
(2)①直接利用滾動方向和滾動周數(shù)結(jié)合數(shù)軸得出答案;
②計算每次滾動的距離相加得出路程,并根據(jù)數(shù)軸得出表示的數(shù);
解:
(1),
∴點A表示的數(shù)是,
故答案為:;
(2),
∴第3次滾動后,Q點距離原點最遠(yuǎn);
②,
,
當(dāng)圓片結(jié)束運(yùn)動時,Q點運(yùn)動的路程共有,
,
,
∴此時點Q所表示的數(shù)是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=+1與x軸、y軸分別交于點A、B,以線AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90o、點P(x、y)為線段BC上一個動點(點P不與B、C重合),設(shè)△OPA的面積為S。
(1)求點C的坐標(biāo);
(2)求S關(guān)于x的函數(shù)解析式,并寫出x的的取值范圍;
(3)△OPA的面積能于嗎,如果能,求出此時點P坐標(biāo),如果不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點A在y軸的正半軸上,點C在x軸的正半軸上,線段OA,OC的長分別是m,n且滿足(m-6)2+=0,點D是線段OC上一點,將△AOD沿直線AD翻折,點O落在矩形對角線AC上的點E處
(1)求線段OD的長
(2)求點E的坐標(biāo)
(3)DE所在直線與AB相交于點M,點N在x軸的正半軸上,以M、A、N、C為頂點的四邊形是平行四邊形時,求N點坐
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此類推,則a2018的值為( 。
A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=8,C為弧AB的中點,P為⊙O上一動點,連接AP、CP,過C作CD⊥CP交AP于點D,點P從B運(yùn)動到C時,則點D運(yùn)動的路徑長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2015南通)如圖,在ABCD中,點E,F分別在AB,DC上,且ED⊥DB,FB⊥BD.
(1)求證:△AED≌△CFB;
(2)若∠A=30°,∠DEB=45°,求證:DA=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析式為y=﹣x+2,l1與x軸交于點B,直線l2經(jīng)過點D(0,5),與直線l1交于點C(﹣1,m),且與x軸交于點A,
(1)求點C的坐標(biāo)及直線l2的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∠BAC,∠ACB的平分線相交于點E,過點E作EF∥BC交AC于點F,則EF的長為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com