【題目】如圖,⊙O的直徑AB=8,C為弧AB的中點(diǎn),P為⊙O上一動點(diǎn),連接AP、CP,過C作CD⊥CP交AP于點(diǎn)D,點(diǎn)P從B運(yùn)動到C時,則點(diǎn)D運(yùn)動的路徑長為____.
【答案】
【解析】分析:以AC為斜邊作等腰直角三角形ACQ,則∠AQC=90°,依據(jù)∠ADC=135°,可得點(diǎn)D的運(yùn)動軌跡為以Q為圓心,AQ為半徑的,依據(jù)△ACQ中,AQ=4,即可得到點(diǎn)D運(yùn)動的路徑長為=2π.
詳解:如圖所示,以AC為斜邊作等腰直角三角形ACQ,則∠AQC=90°.∵⊙O的直徑為AB,C為的中點(diǎn),∴∠APC=45°.又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴點(diǎn)D的運(yùn)動軌跡為以Q為圓心,AQ為半徑的.又∵AB=8,C為的中點(diǎn),∴AC=4,∴△ACQ中,AQ=4,∴點(diǎn)D運(yùn)動的路徑長為=2π.
故答案為:2π.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算或化簡:
(1)3-(-8)+(-5)+6
(2).
(3)-23×(-8)-(-)3×(-16)+×(-3)2
(4)先化簡,再求值:
,其中,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個三角形數(shù)陣,仔細(xì)觀察排列規(guī)律:
第1行 1
第2行 -
第3行 - -
第4行 - -
.....
按照這個規(guī)律繼續(xù)排列下去,第21行第2個數(shù)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】河南省旅游資源豐富,2013~2017年旅游收入不斷增長,同比增速分別為:15.3%,12.7%,15.3%,14.5%,17.1%.關(guān)于這組數(shù)據(jù),下列說法正確的是( )
A. 中位數(shù)是12.7% B. 眾數(shù)是15.3%
C. 平均數(shù)是15.98% D. 方差是0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為1個單位的圓片上有一點(diǎn)Q與數(shù)軸上的原點(diǎn)重合.(提示:圓的周長C=2πr,結(jié)果保留π的形式)
(1)把圓片沿數(shù)軸向右滾動1周,點(diǎn)Q到達(dá)數(shù)軸上點(diǎn)A的位置,點(diǎn)A表示的數(shù)是 ;
(2)圓片在數(shù)軸上向右滾動的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動的周數(shù)記為負(fù)數(shù),依次運(yùn)動情況記錄如下:+2,﹣1,+3,﹣5,﹣1
①第幾次滾動后,Q點(diǎn)距離原點(diǎn)最遠(yuǎn)?
②當(dāng)圓片結(jié)束運(yùn)動時,Q點(diǎn)運(yùn)動的路程共有多少?此時點(diǎn)Q所表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師元旦節(jié)期間到武商眾圓商場購買一臺某品牌筆記本電腦,恰逢商場正推出“迎元旦”促銷打折活動,具體優(yōu)惠情況如表:
購物總金額(原價) | 折扣 |
不超過5000元的部分 | 九折 |
超過5000元且不超過10000元的部分 | 八折 |
超過10000元且不超過20000元的部分 | 七折 |
…… | …… |
例如:若購買的商品原價為15000元,實(shí)際付款金額為:
5000×90%+(10000﹣5000)×80%+(15000﹣10000)×70%=12000元.
(1)若這種品牌電腦的原價為8000元/臺,請求出張老師實(shí)際付款金額;
(2)已知張老師購買一臺該品牌電腦實(shí)際付費(fèi)5700元.
①求該品牌電腦的原價是多少元/臺?
②若售出這臺電腦商場仍可獲利14%,求這種品牌電腦的進(jìn)價為多少元/臺?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD= ∠BAC=60°,于是 = ;
遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠ADE=120°,D,E,C三點(diǎn)在同一條直線上,連接BD.
①求證:△ADB≌△AEC;
②請直接寫出線段AD,BD,CD之間的等量關(guān)系式;
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對稱點(diǎn)E,連接AE并延長交BM于點(diǎn)F,連接CE,CF.
①證明△CEF是等邊三角形;
②若AE=5,CE=2,求BF的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)是正方形邊上任意一點(diǎn),以為邊作正方形,連接,點(diǎn)是線段中點(diǎn),射線與交于點(diǎn),連接.
(1)請直接寫出和的數(shù)量關(guān)系和位置關(guān)系.
(2)把圖1中的正方形繞點(diǎn)順時針旋轉(zhuǎn),此時點(diǎn)恰好落在線段上,如圖2,其他條件不變,(1)中的結(jié)論是否成立,請說明理由.
(3)把圖1中的正方形繞點(diǎn)順時針旋轉(zhuǎn),此時點(diǎn)、恰好分別落在線段、 上,連接,如圖3,其他條件不變,若,,直接寫出的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,E、F為對角線BD上的兩點(diǎn),且∠DAE=∠BCF.
(1)求證:AE=CF;
(2)求證:AE∥CF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com