【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的情況(記向東為正)記錄如下(x>5且x<14,單位:m):
行駛次數(shù) | 第一次 | 第二次 | 第三次 | 第四次 |
行駛情況 | x | ﹣x | x﹣3 | 2(5﹣x) |
行駛方向(填“東”或“西”) |
|
|
|
|
(1)請(qǐng)將表格補(bǔ)充完整;
(2)求經(jīng)過連續(xù)4次行駛后,這輛出租車所在的位置;
(3)若出租車行駛的總路程為41m,求第一次行駛的路程x的值.
【答案】(1)東,西,東,西;(2)向東(7﹣x)km;(3)12.
【解析】
(1)根據(jù)數(shù)的符號(hào)說明即可;
(2)把路程相加,求出結(jié)果,看結(jié)果的符號(hào)即可判斷出答案;
(3)求出每個(gè)數(shù)的絕對(duì)值,相加求出總路程,再解方程求解即可.
解:(1)填表如下:
行駛次數(shù) | 第一次 | 第二次 | 第三次 | 第四次 |
行駛情況 | x | ﹣x | x﹣3 | 2(5﹣x) |
行駛方向(填“東”或“西”) | 東 | 西 | 東 | 西 |
故答案為:東,西,東,西;
(2)x+(﹣x)+(x﹣3)+2(5﹣x)=7﹣x,
∵x>5且x<14,
∴7﹣x>0,
∴經(jīng)過連續(xù)4次行駛后,這輛出租車所在的位置是向東(7﹣x)km.
(3)|x|+|﹣x|+|x﹣3|+|2(5﹣x)|=x+x+x﹣3﹣2(5﹣x)=x﹣13,
依題意有x﹣13=41,
解得x=12.
答:第一次行駛的路程x的值是12.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠一周計(jì)劃每日生產(chǎn)某產(chǎn)品100噸,由于工人實(shí)行輪休,每日上班人數(shù)不一定相等,實(shí)際每日生產(chǎn)量與計(jì)劃量相比情況如下表(以計(jì)劃量為標(biāo)準(zhǔn),增加的噸數(shù)記為正數(shù),減少的噸數(shù)記為負(fù)數(shù))
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減/噸 | ﹣1 | +3 | ﹣2 | +4 | +7 | ﹣5 | ﹣10 |
(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少噸?
(2)本周總生產(chǎn)量是多少噸?比原計(jì)劃增加了還是減少了?增減數(shù)為多少噸?
(3)若本周總生產(chǎn)的產(chǎn)品全部由35輛貨車一次性裝載運(yùn)輸離開工廠,則平均每輛貨車大約需裝載多少噸?(結(jié)果精確到0.01噸)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)是(0,3),點(diǎn)B在x軸上,將△AOB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△AEF,點(diǎn)O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)E、F.
(1)若點(diǎn)B的坐標(biāo)是(﹣4,0),請(qǐng)?jiān)趫D中畫出△AEF,并寫出點(diǎn)E、F的坐標(biāo).
(2)當(dāng)點(diǎn)F落在x軸的上方時(shí),試寫出一個(gè)符合條件的點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在李村河治理工程實(shí)驗(yàn)過程中,某工程隊(duì)接受一項(xiàng)開挖水渠的工程,所需天數(shù)y(天)與每天完成的工程量x(m/天)的函數(shù)關(guān)系圖象如圖所示,是雙曲線的一部分.
(1)請(qǐng)根據(jù)題意,求y與x之間的函數(shù)表達(dá)式;
(2)若該工程隊(duì)有2臺(tái)挖掘機(jī),每臺(tái)挖掘機(jī)每天能夠開挖水渠15米,問該工程隊(duì)需用多少天才能完成此項(xiàng)任務(wù)?
(3)如果為了防汛工作的緊急需要,必須在一個(gè)月內(nèi)(按30天計(jì)算)完成任務(wù),那么每天至少要完成多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面三行數(shù):
取每一行的第n個(gè)數(shù),依次記為x、y、z.如上圖中,當(dāng)n=2時(shí),x=﹣4,y=﹣3,z=2.
(1)當(dāng)n=7時(shí),請(qǐng)直接寫出x、y、z的值,并求這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差;
(2)已知n為偶數(shù),且x、y、z這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差為384,求n的值;
(3)若m=x+y+z,則x、y、z這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差為 (用含m的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲同學(xué)手中藏有三張分別標(biāo)有數(shù)字 , ,1的卡片,乙同學(xué)手中藏有三張分別標(biāo)有1,3,2的卡片,卡片外形相同.現(xiàn)從甲乙兩人手中各任取一張卡片,并將它們的數(shù)字分別記為a,b.
(1)請(qǐng)你用樹形圖或列表法列出所有可能的結(jié)果.
(2)現(xiàn)制定這樣一個(gè)游戲規(guī)則:若所選出的a,b能使得ax2+bx+1=0有兩個(gè)不相等的實(shí)數(shù)根,則稱甲獲勝;否則稱乙獲勝.請(qǐng)問這樣的游戲規(guī)則公平嗎?請(qǐng)你用概率知識(shí)解釋.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2的圖象如圖所示,則關(guān)于x的一元二次方程x2+x+a﹣1=0的根的存在情況是( )
A.沒有實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.有兩個(gè)不相等的實(shí)數(shù)根
D.無法確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com