【題目】圖中的每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).線段的端點(diǎn)均在格點(diǎn)上.

1)在圖中畫出以為一邊的,點(diǎn)在格點(diǎn)上,使的面積為4,且的一個(gè)角的正切值是;

2)在圖中畫出以為頂角的等腰(非直角三角形),點(diǎn)在格點(diǎn)上.請(qǐng)你直接寫出的面積.

【答案】1)畫圖見解析;(2)畫圖見解析,6

【解析】

1)根據(jù)AB的長(zhǎng)以及△ABE的面積可得出AB邊上的高為2,再直接利用正切的定義借助網(wǎng)格得出E點(diǎn)位置,再畫出△ABE即可;
2)在網(wǎng)格中根據(jù)勾股定理可得出DC2=22+42,利用網(wǎng)格找出使CF2=DC2=22+42的點(diǎn)F即可,然后利用網(wǎng)格通過轉(zhuǎn)化法可求出△CDF的面積.

解:(1)設(shè)△ABEAB邊上的高為EG,則SABE=×AB×EG=4,

AB=4,∴EG=2,

假設(shè)∠A的正切值為,即tanA=,∴AG=6,

∴點(diǎn)E的位置如圖所示,△ABE即為所求:

2)根據(jù)勾股定理可得,DC2=22+42,∴CF2=DC2=22+42,

所以點(diǎn)F的位置如圖所示,△DCF即為所求;
根據(jù)網(wǎng)格可得,△DCF的面積=4×4-×2×4-×2×4-×2×2=6

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AE、BE是△ABC的兩個(gè)內(nèi)角的平分線,過點(diǎn)AADAE.交BE的延長(zhǎng)線于點(diǎn)D.若ADAB,BEED12,則cosABC_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接年中、日、韓三國(guó)青少年橄欖球比賽,南雅中學(xué)計(jì)劃對(duì)面積為運(yùn)動(dòng)場(chǎng)進(jìn)行塑膠改造.經(jīng)投標(biāo),由甲、乙兩個(gè)工程隊(duì)來完成,已知甲隊(duì)每天能改造的面積是乙隊(duì)每天能改造面積的倍,并且在獨(dú)立完成面積為的改造時(shí),甲隊(duì)比乙隊(duì)少用.

1)求甲、乙兩工程隊(duì)每天能完成塑膠改造的面積;

2)設(shè)甲工程隊(duì)施工天,乙工程隊(duì)施工天,剛好完成改造任務(wù),求的函數(shù)解析式;

3)若甲隊(duì)每天改造費(fèi)用是萬元,乙隊(duì)每天改造費(fèi)用是萬元,且甲、乙兩隊(duì)施工的總天數(shù)不超過天,如何安排甲、乙兩隊(duì)施工的天數(shù),使施工總費(fèi)用最低?并求出最低的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,BC是⊙O的直徑,點(diǎn)A在⊙O上,ADBC,垂足為D,BE分別交ADAC于點(diǎn)F、G

1)判斷△FAG的形狀,并說明理由;

2)如圖2,若點(diǎn)E和點(diǎn)ABC的兩側(cè),BEAC的延長(zhǎng)線交于點(diǎn)G,AD的延長(zhǎng)線交BE于點(diǎn)F,其余條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說明理由;

3)在(2)的條件下,若BG26BDDF7,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12分)如圖,已知三角形ABC的邊AB⊙O的切線,切點(diǎn)為BAC經(jīng)過圓心O并與圓相交于點(diǎn)D、C,過C作直線CEAB,交AB的延長(zhǎng)線于點(diǎn)E

1)求證:CB平分∠ACE;

2)若BE=3CE=4,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綠色植物銷售公司打算銷售某品種的賞葉植物,在針對(duì)這種賞葉植物進(jìn)行市場(chǎng)調(diào)查后,繪制了以下兩張函數(shù)圖象.其中圖①為一條直線,圖②為一條拋物線,且拋物線頂點(diǎn)為(61),請(qǐng)根據(jù)圖象解答下列問題:

1)如果公司在3月份銷售這種賞葉植物,單株獲利多少元;

2)請(qǐng)直接寫出圖象①中直線的解析式;

3)請(qǐng)你求出公司在哪個(gè)月銷售這種賞葉植物,單株獲利最大?(備注:?jiǎn)沃戢@利=單株售價(jià)﹣單株成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,已知C90°,B50°,點(diǎn)D在邊BC上,BD2CD(圖4).把ABC繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)m0m180)度后,如果點(diǎn)B恰好落在初始RtABC的邊上,那么m_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)時(shí)的函數(shù)值相等.

1)求二次函數(shù)的解析式;

2)若一次函數(shù)的圖象與二次函數(shù)的圖象都經(jīng)過點(diǎn)A,求mk的值;

3)設(shè)二次函數(shù)的圖象與x軸交于點(diǎn)B,C(點(diǎn)B在點(diǎn)C的左側(cè)),將二次函數(shù)的圖象在點(diǎn)B,C間的部分(含點(diǎn)B和點(diǎn)C)向左平移個(gè)單位后得到的圖象記為C,同時(shí)將(2)中得到的直線向上平移n個(gè)單位.請(qǐng)結(jié)合圖象回答:當(dāng)平移后的直線與圖象G有公共點(diǎn)時(shí),n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是矩形,點(diǎn)A坐標(biāo)為(2,0),點(diǎn)C坐標(biāo)為(0,4).點(diǎn)P從點(diǎn)O出發(fā),沿OA以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)A出發(fā),沿AB以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)A重合時(shí)運(yùn)動(dòng)停止.設(shè)運(yùn)動(dòng)時(shí)間為t秒.

1)當(dāng)CBQPAQ相似時(shí),求出t的值;

2)當(dāng)t=1時(shí),拋物線y=2x2+bx+c經(jīng)過P,Q兩點(diǎn),與y軸交于點(diǎn)M,在該拋物線上找點(diǎn)D,使∠MQD=MPQ,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案