【題目】如圖,已知菱形ABCD的周長(zhǎng)為16,面積為,E為AB的中點(diǎn),若P為對(duì)角線BD上一動(dòng)點(diǎn),則EP+AP的最小值為( 。
A. 2 B. 2 C. 4 D. 4
【答案】B
【解析】試題解析:如圖作CE′⊥AB于E′,交BD于P′,連接AC、AP′.
∵已知菱形ABCD的周長(zhǎng)為16,面積為8,
∴AB=BC=4,ABCE′=8,
∴CE′=2,
在Rt△BCE′中,BE′=,
∵BE=EA=2,
∴E與E′重合,
∵四邊形ABCD是菱形,
∴BD垂直平分AC,
∴A、C關(guān)于BD對(duì)稱(chēng),
∴當(dāng)P與P′重合時(shí),P′A+P′E的值最小,最小值為CE的長(zhǎng)=2,
故選:B.
【題型】單選題
【結(jié)束】
11
【題目】9的平方根是_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知A、O、B三點(diǎn)在同一直線上,射線OD、OE分別平分∠AOC、∠BOC
(1)求∠DOE的度數(shù);
(2)如圖2,在∠AOD內(nèi)引一條射線OF,使∠COF=,其他不變,設(shè)∠DOF= )
①求∠AOF的度數(shù)(用含的代數(shù)式表示).
②若∠BOD是∠AOF的2倍,求∠DOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(背景知識(shí))
數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:
例如,若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則、兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為.
(問(wèn)題情境)
在數(shù)軸上,點(diǎn)表示的數(shù)為-20,點(diǎn)表示的數(shù)為10,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)也從點(diǎn)出發(fā)沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),已知運(yùn)動(dòng)到4秒鐘時(shí),、兩點(diǎn)相遇,且動(dòng)點(diǎn)、運(yùn)動(dòng)的速度之比是(速度單位:單位長(zhǎng)度/秒).
備用圖
(綜合運(yùn)用)
(1)點(diǎn)的運(yùn)動(dòng)速度為______單位長(zhǎng)度/秒,點(diǎn)的運(yùn)動(dòng)速度為______單位長(zhǎng)度/秒;
(2)當(dāng)時(shí),求運(yùn)動(dòng)時(shí)間;
(3)若點(diǎn)、在相遇后繼續(xù)以原來(lái)的速度在數(shù)軸上運(yùn)動(dòng),但運(yùn)動(dòng)的方向不限,我們發(fā)現(xiàn):隨著動(dòng)點(diǎn)、的運(yùn)動(dòng),線段的中點(diǎn)也隨著運(yùn)動(dòng).問(wèn)點(diǎn)能否與原點(diǎn)重合?若能,求出從、相遇起經(jīng)過(guò)的運(yùn)動(dòng)時(shí)間,并直接寫(xiě)出點(diǎn)的運(yùn)動(dòng)方向和運(yùn)動(dòng)速度;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x軸上有點(diǎn)A(1,0),點(diǎn)B在y軸上,點(diǎn)C(m,0)為x軸上一動(dòng)點(diǎn)且m<﹣1,連接AB,BC,tan∠ABO=,以線段BC為直徑作⊙M交直線AB于點(diǎn)D,過(guò)點(diǎn)B作直線l∥AC,過(guò)A,B,C三點(diǎn)的拋物線為y=ax2+bx+c,直線l與拋物線和⊙M的另一個(gè)交點(diǎn)分別是E,F(xiàn).
(1)求B點(diǎn)坐標(biāo);
(2)用含m的式子表示拋物線的對(duì)稱(chēng)軸;
(3)線段EF的長(zhǎng)是否為定值?如果是,求出EF的長(zhǎng);如果不是,說(shuō)明理由.
(4)是否存在點(diǎn)C(m,0),使得BD=AB?若存在,求出此時(shí)m的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為-30、0.若點(diǎn)A、B同時(shí)出發(fā),點(diǎn)A以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng);點(diǎn)B以每秒3個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)A出發(fā)時(shí)的位置后立即以每秒4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求點(diǎn)A和點(diǎn)B第一次相遇時(shí)t的值;
(2)當(dāng)點(diǎn)A和點(diǎn)B之間的距離為6個(gè)單位長(zhǎng)度時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:()﹣2﹣+(﹣4)0﹣cos45°.
【答案】1
【解析】試題分析:把原式的第一項(xiàng)根據(jù)負(fù)整數(shù)指數(shù)冪的意義化簡(jiǎn),第二項(xiàng)根據(jù)算術(shù)平方根的定義求出9的算術(shù)平方根,第三項(xiàng)根據(jù)零指數(shù)公式化簡(jiǎn),最后一項(xiàng)利用特殊角的三角函數(shù)值化簡(jiǎn),合并后即可求出值.
試題解析:原式=4﹣3+1﹣
=2﹣1
=1.
【題型】解答題
【結(jié)束】
16
【題目】《九章算術(shù)》“勾股”章有一題:“今有二人同所立,甲行率七,乙行率三.乙東行,甲南行十步而斜東北與乙會(huì).問(wèn)甲乙行各幾何”.大意是說(shuō),已知甲、乙二人同時(shí)從同一地
點(diǎn)出發(fā),甲的速度為7,乙的速度為3.乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.那么相遇時(shí),甲、乙各走了多遠(yuǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在半徑為4的⊙O中,AB、CD是兩條直徑,M為OB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EM>MC.連結(jié)DE,DE=.
(1)求證:;
(2)求EM的長(zhǎng);
(3)求sin∠EOB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)軸上兩點(diǎn)間的距離等于這兩點(diǎn)所對(duì)應(yīng)的數(shù)的差的絕對(duì)值.例:如圖所示,點(diǎn)A、B在數(shù)軸上分別對(duì)應(yīng)的數(shù)為a、b,則A、B兩點(diǎn)間的距離表示為|AB|=|a﹣b|.
根據(jù)以上知識(shí)解題:
(1)若數(shù)軸上兩點(diǎn)A、B表示的數(shù)為x、﹣1,
①A、B之間的距離可用含x的式子表示為 ;
②若該兩點(diǎn)之間的距離為2,那么x值為 .
(2)|x+1|+|x﹣2|的最小值為 ,此時(shí)x的取值是 ;
(3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|)=15,求x﹣2y的最大值 和最小值 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com