【題目】如圖,已知菱形ABCD的周長(zhǎng)為16,面積為,EAB的中點(diǎn),若P為對(duì)角線BD上一動(dòng)點(diǎn),則EP+AP的最小值為( 。

A. 2 B. 2 C. 4 D. 4

【答案】B

【解析】試題解析:如圖作CE′ABE′,交BDP′,連接AC、AP′.

∵已知菱形ABCD的周長(zhǎng)為16,面積為8

AB=BC=4,ABCE′=8

CE′=2,

RtBCE′中,BE′=,

BE=EA=2,

EE′重合,

∵四邊形ABCD是菱形,

BD垂直平分AC,

A、C關(guān)于BD對(duì)稱(chēng),

∴當(dāng)PP′重合時(shí),P′A+P′E的值最小,最小值為CE的長(zhǎng)=2,

故選:B.

型】單選題
結(jié)束】
11

【題目】9的平方根是_____

【答案】±3

【解析】試題解析:∵(±3)2=9,

±=±3

9的平方根是±3.

故答案為:±3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知A、O、B三點(diǎn)在同一直線上,射線OD、OE分別平分∠AOC、BOC

(1)求∠DOE的度數(shù);

(2)如圖2,在∠AOD內(nèi)引一條射線OF,使∠COF=,其他不變,設(shè)∠DOF=

①求∠AOF的度數(shù)(用含的代數(shù)式表示).

②若∠BOD是∠AOF2倍,求∠DOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(背景知識(shí))

數(shù)軸是初中數(shù)學(xué)的一個(gè)重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:

例如,若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則、兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為

(問(wèn)題情境)

在數(shù)軸上,點(diǎn)表示的數(shù)為-20,點(diǎn)表示的數(shù)為10,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)也從點(diǎn)出發(fā)沿?cái)?shù)軸負(fù)方向運(yùn)動(dòng),已知運(yùn)動(dòng)到4秒鐘時(shí),、兩點(diǎn)相遇,且動(dòng)點(diǎn)、運(yùn)動(dòng)的速度之比是(速度單位:單位長(zhǎng)度/秒).

備用圖

(綜合運(yùn)用)

1)點(diǎn)的運(yùn)動(dòng)速度為______單位長(zhǎng)度/秒,點(diǎn)的運(yùn)動(dòng)速度為______單位長(zhǎng)度/秒;

2)當(dāng)時(shí),求運(yùn)動(dòng)時(shí)間;

3)若點(diǎn)、在相遇后繼續(xù)以原來(lái)的速度在數(shù)軸上運(yùn)動(dòng),但運(yùn)動(dòng)的方向不限,我們發(fā)現(xiàn):隨著動(dòng)點(diǎn)的運(yùn)動(dòng),線段的中點(diǎn)也隨著運(yùn)動(dòng).問(wèn)點(diǎn)能否與原點(diǎn)重合?若能,求出從相遇起經(jīng)過(guò)的運(yùn)動(dòng)時(shí)間,并直接寫(xiě)出點(diǎn)的運(yùn)動(dòng)方向和運(yùn)動(dòng)速度;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知x軸上有點(diǎn)A(1,0),點(diǎn)By軸上,點(diǎn)C(m,0)為x軸上一動(dòng)點(diǎn)且m<﹣1,連接AB,BC,tanABO=,以線段BC為直徑作⊙M交直線AB于點(diǎn)D,過(guò)點(diǎn)B作直線lAC,過(guò)A,B,C三點(diǎn)的拋物線為y=ax2+bx+c,直線l與拋物線和⊙M的另一個(gè)交點(diǎn)分別是E,F(xiàn).

(1)求B點(diǎn)坐標(biāo);

(2)用含m的式子表示拋物線的對(duì)稱(chēng)軸;

(3)線段EF的長(zhǎng)是否為定值?如果是,求出EF的長(zhǎng);如果不是,說(shuō)明理由.

(4)是否存在點(diǎn)C(m,0),使得BD=AB?若存在,求出此時(shí)m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為-30、0.若點(diǎn)A、B同時(shí)出發(fā),點(diǎn)A以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng);點(diǎn)B以每秒3個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)A出發(fā)時(shí)的位置后立即以每秒4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

1)求點(diǎn)A和點(diǎn)B第一次相遇時(shí)t的值;

2)當(dāng)點(diǎn)A和點(diǎn)B之間的距離為6個(gè)單位長(zhǎng)度時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:()2+(﹣4)0cos45°.

【答案】1

【解析】試題分析:把原式的第一項(xiàng)根據(jù)負(fù)整數(shù)指數(shù)冪的意義化簡(jiǎn),第二項(xiàng)根據(jù)算術(shù)平方根的定義求出9的算術(shù)平方根,第三項(xiàng)根據(jù)零指數(shù)公式化簡(jiǎn),最后一項(xiàng)利用特殊角的三角函數(shù)值化簡(jiǎn),合并后即可求出值.

試題解析:原式=4﹣3+1﹣

=2﹣1

=1.

型】解答
結(jié)束】
16

【題目】《九章算術(shù)》勾股章有一題:今有二人同所立,甲行率七,乙行率三.乙東行,甲南行十步而斜東北與乙會(huì).問(wèn)甲乙行各幾何.大意是說(shuō),已知甲、乙二人同時(shí)從同一地

點(diǎn)出發(fā),甲的速度為7,乙的速度為3.乙一直向東走,甲先向南走10步,后又斜向北偏東方向走了一段后與乙相遇.那么相遇時(shí),甲、乙各走了多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在半徑為4⊙O中,AB、CD是兩條直徑,MOB的中點(diǎn),CM的延長(zhǎng)線交⊙O于點(diǎn)E,且EMMC.連結(jié)DEDE

1求證:;

2EM的長(zhǎng);

3)求sin∠EOB的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上兩點(diǎn)間的距離等于這兩點(diǎn)所對(duì)應(yīng)的數(shù)的差的絕對(duì)值.例:如圖所示,點(diǎn)AB在數(shù)軸上分別對(duì)應(yīng)的數(shù)為a、b,則A、B兩點(diǎn)間的距離表示為|AB|=|ab|

根據(jù)以上知識(shí)解題:

1)若數(shù)軸上兩點(diǎn)AB表示的數(shù)為x、﹣1

A、B之間的距離可用含x的式子表示為  ;

若該兩點(diǎn)之間的距離為2,那么x值為  

2|x+1|+|x﹣2|的最小值為  ,此時(shí)x的取值是  ;

3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|=15,求x﹣2y的最大值 和最小值  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,菱形中,分別是、上的點(diǎn),且,,則__________度.

查看答案和解析>>

同步練習(xí)冊(cè)答案